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ABSTRACT 
Snow is an important factor in the lives of flora and fauna in those regions where 

it occurs. Despite this, there is a relative lack of information about the ecological 

role of snow. In addition, on a global scale the majority of the research on snow 

ecology has been based in the boreal regions of North America and Eurasia. 

Insights from these areas may not extrapolate well to Australia. 

The distribution and physical characteristics of snow are highly variable both 

temporally and spatially. Its occurrence is affected by a range of factors acting at 

multiple scales. Working in snow covered areas, however, presents considerable 

practical problems, particularly for researchers attempting to sample organisms 

in the subnivean space between the base of the snowpack and the ground surface. 

As a result, most research has focused on small-scale projects because of 

logistical and animal-welfare issues. 

A technique was developed for this study for sampling small mammals beneath 

the snow using hairtubes fitted with bait and a removable adhesive surface that 

could be inserted into the subnivean space through a vertical PVC pipe. The 

technique provided a 39% detection rate with only 0.2% of tubes visited but not 

collecting hair samples. Using. this technique, it was possible to expand 

systematic sampling of small mammals in the subnivean space to larger scales at 

which snow cover can vary spatially and temporally particularly at the landscape 

scale. 

The main part of this research was conducted over two winters (2002-2003) at 

sites established in a series of valleys close to the Summit Road in Kosciuszko 

National Park, south-eastern Australia. Selection of sites was based on factors 

considered important in influencing the distribution of snow in the landscape and 

representative of the key vegetation types occurring in the subalpine zone. The 

resulting design consisted of 72 sites stratified by elevation (1501-1600 m, 1601-

1700 m, 1701-1800 m), aspect (accumulating, ablating) and vegetation type 

(woodland, wet heath, dry heath, grassland) with each combination replicated 

three times. Each site consisted of three hairtube plots approximately 10 metres 

apart, at which small mammals were sampled. In addition, a range of biotic and 

abiotic factors including snow cover characteristics were measured throughout 

the winter at these same sites. 
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In January 2003, a maJor bushfire burned 70% of the subalpine area of 

Kosciuszko National Park and damaged 83% of the sites established in 2002. As 

a result sampling during winter 2003 was limited to high elevation sites, along 

with a fifth habitat type (boulderfields). 

The snow cover that occurs in the main alpine and subalpine region of the· Snowy 

Mountains is primarily maritime in areas where there is sufficient accumulation, 

and ephemeral at lower elevations and ort higher ablating aspects. Maritime 

snow is generally deep (> lOOcm), with a density >0.30gcm-3, as a result of 

destructive metamorphism throughout the winter. The formation of depth hoar, 

which is considered to be important in facilitating the development of the 

subnivean space, does not occur under these conditions. Ephemeral snow is 

characterised by warm shallow snow that often melts before new snow is 

deposited. 

When snow was present, detections of dusky antechinus, Antechinus swainsonii 

and the bush rat, Rattus fuscipes were negatively correlated with snow depth and 

duration, and positively correlated with the complexity of structures and 

microtopography. At high elevations, detections were largely confined to 

boulderfields, and at mid- and low elevations, small mammals were detected 

primarily in habitats where the subnivean space was mo~t extensive. Antechinus 

swainsonii and R. fuscipes responded differently to snow cover with the latter 

seeming better able to overwinter where snow cover was shallow and patchy. In 

contrast, A. swainsonii occurrence was correlated with the size of the subnivean 

space. 

The development of the subnivean space in the Snowy Mountains is dependent 

on the presence of structures such as shrubs, boulders and microtopographic 

features that are capable of supporting a snow layer above ground level. 

The temperature in the subnivean space was virtually constant beneath the 

snowpack, ranging between 0 and + 1 °C. When snow was patchy or absent, 

temperatures at ground level were highly variable with a minimum as low .as -

13°C and maximum as high as +47.5°C. Antechinus swainsonii and R. fuscipes 

were detected more regularly at sites that were thermally variable. At sites with 

deep and persistent snow cover (maritime snow), subnivean temperatures were 
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stable, but small mammals were detected at low frequencies. At high elevations, 

boulderfields were favoured by small mammals during the nival period but were 

no different thermally from other habitats. 

The limitations imposed by snow cover on small mammals were further verified 

by a radio tracking study conducted during 2003 at Perisher Creek. That study 

investigated the home range size and activity patterns of R. fuscipes and A. 

swainsonii in relation to snow cover. Once continuous snow cover became 

established, the home range of both species contracted dramatically and there 

was an increase in home range overlap. Neither species showed any change in 

diurnal activity patterns. Rattus fascipes showed signs of social interaction 

during both seasons in contrast to A. swainsonii, which appeared to remain 

solitary. In winter, R. fuscipes nested communally at a single location, while 

during autumn the species appeared to use a number of nest sites. There was no 

significant change in daily activity patterns between autumn and winter in either 

species. R. fuscipes remained primarily nocturnal during both pre-nival and nival 

periods while A. swainsonii continued to be active throughout the diel cycle, 

although there was a slight shift in its peak activity time. 

Human activities can, have significant effects on the subnivean space and its 

residents. The physical characteristics of a range of modified snow types were 

investigated in the vicinity of several ski resorts in Kosciuszko National Park. 

Human activities associated with snow-based recreation, such as the creation of 

ski pistes, surface ski lifts and over-snow routes, involve compression of the 

snowpack and resulted in small or absent subnivean spaces and high snow cover 

densities compared to unmodified snow cover. 

To test the effects of the loss of the subnivean space on small mammals, the 

snowpack was experimentally compressed in high quality subnivean habitats. 

Detections of R. fascipes and A. swainsonii declined by 75-80%. Burnt sites 

from the 2002 study were used in 2003 to investigate the effect of removing 

vegetation on the subnivean space, to simulate the loss of structure associated 

with ski slope preparation. There was a significant reduction (p<0.0001) in the 

size of the subnivean space compared to unburnt sites regardless of habitat type. 
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The key conclusions of the work reported in this thesis are listed below: 

• Snow conditions in the Australian Alps are markedly different from those 

of higher northern latitudes and altitudes. As a result, conclusions about 

snow/fauna interactions based on research in regions with particular snow 

cover types need to be carefully considered before attempting to 

extrapolate generalisations to other parts of the world. 

• The subnivean space can be formed either by passive or active processes. 

The former occurs when there are sufficient competent structures to 

permit the support of the snow pack above the ground surface, while the 

latter refers to the ability of small mammals to actively tunnel through 

relatively low density snow (depth hoar) and thus create their own 

subnivean space. In Australia the passive process dominates. 

• The widely held assumption that small mammals are dependent on the 

thermally stable conditions in the subnivean space was not confirmed. 

Rattus fascipes and A. swainsonii survive in the Australian Alps because 

they are able to exploit thermally variable environments. 

• Management of human activities in nival areas should focus on avoiding 

disturbance in areas where a subnivean space forms, particularly in high 

quality winter habitats such as boulderfields. 

• Global warming resulting from climate change is likely to provide 

conditions in the Australian Alps that favour an expansion of the 

distribution and population of R. fuscipes and A. swainsonii, but nival 

endemics such as Burramys parvus and possibly Mastacomys fuscus may 

be at a disadvantage. 

• The extent of alpine and subalpine environments in Australia will 

decrease in future, imposing greater pressure on a shrinking resource and 

raising the possibility of conflict between user groups and conservation 

imperatives. 
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1.1 Background 
In nival areas, the presence of snow in the landscape is an important 

environmental factor. For the fauna of these areas, snow plays an important role 

in their ecology. i;>espite this, the investigation of snow and its relationship to 

fauna remains underdeveloped. This is of particular concern as many areas that 

are subject to the accumulation of snow are under increasing pressure from 

human interference such as winter recreation and associated activities, and will 

experience additional impacts in future as a result of climate change due to 

enhanced greenhouse effect (IPCC 2001) . 

One particular area of interest is the role of snow in the ecology of fauna that 

reside in the subnivean space. To date, snow ecology has been explored using 

indirect or interpolative methods due to the difficulties of sampling in snow 

·covered environments. Consequently, few studies have directly investigated the 

winter ecology of fauna in general, and small mammals in particular. 

Four small mammal species are known to remain active throughout the winter in 

the Snowy Mountains of south-eastern Australia, including two dasyurid 

marsupials, the dusky antechinus, Antechinus swainsonii and agile antechinus A. 

agilis and two murid rodents, the bush rat Rattusfuscipes and broad-toothed rat 

Mastacomys fuscus. Of these species, M fuscus is listed as a threatened species. 

The winter ecology of small mammals in the Australian Alps has received 

limited attention to date, especially in relation to the role of snow cover and the 

development of the subnivean space. 

In January and February 2003, the Snowy Mountains were subject to a 

significant wildfire that burned 69% of the area above 1500 m. As a result of 

this event, 85% of the sites used in this study in 2002 were damaged, along with 

the Smiggin Holes trapping grid which is the longest monitored site in the Snowy 

Mountains. Key elements of this work were undertaken before the wildfire. 

However, the fire significantly impaired my ability to complete this study as 

originally planned. It did, however, create additional opportunities for research 

which have been integrated into this study. Data collected in this study is being 

used as the basis of a long term project by the Department of Environment and 
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Conservation (formerly National Parks and Wildlife Service) to monitor post-fire 

recovery in Kosciuszko National Park. 

1.2 Aims 
The aims of this study were to: 

• develop techniques to enable the monitoring of small mammals in the 

subnivean space; 

• ascertain the characteristics of snow cover under Australian climatic 

conditions; . 

• investigate the role of snow in the distribution of winter-active small 

mammals; 

• explore the interaction between small mammals and their thermal 

environment during winter; 

• determine the effects of snow cover on home range size and diurnal 

activity patterns of winter active small mammals; and 

• assess the impacts of snow modification by human activities on snow 

characteristics and small mammals. 

Thesis structure 
This thesis consists of three main parts, the first of which comprises two 

introductory chapters. Chapter 2 provides a review of snow and its role in the 

ecology of wildlife that inhabit nival areas. It then considers some of the 

implications of human activity and conservation in nival areas. In Chapter 3, I 

provide an overview of the Australian Alps, review what is known about the 

winter active small mammals, and describe the history of human activity in the 

Australian Alps. 

The second part of the thesis consists of a series of papers that have either been 

accepted or have been submitted for publication. Chapter 4 provides a 

characterisation and classification of Australian snow and highlights the 

differences between Australian snow conditions and those in other parts of the 

world, in particular, those areas from which we have drawn much of our 

understanding of nival ecology. Chapter 5 describes a new technique for 
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sampling small mammals in the subnivean space using hairtubes. Previously, 

small mammals were only able to be sampled at trapping grid-scales. The new 

technique developed for this thesis permitted systematic sampling of small 

mammals over landscape-scales in nival environments. Chapter 6 investigated 

the relationship between snow cover and environmental factors such as elevation, 

aspect and vegetation structure. This chapter also addresses the distribution of R. 

fuscipes and A. swainsonii in relation to natural snow cover and the factors that 

affect the development of the subnivean space. The effect of the thermal 

environment experienced by R. fuscipes and A. swainsonii on their distribution 

patterns during the winter was investigated in Chapter 7. The home range and 

activity patterns of R. fuscipes and A. swainsonii in response to snow cover are 

investigated in Chapter 8. Chapter 9 considers the potential impacts of human 

activities on the subnivean ecology of R. fuscipes and A. swainsonii. 

The third part of the thesis (Chapter 10) summarises the findings of previous 

chapters. 

1.4 References 
IPCC (2001) Climate change 2001: The scientific basis. Technical summary from 

Working Group 1. Intergovernmental Panel on Climate Change, Geneva. 
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2.1 Introduction 
In his seminal work on the snow ecology in high northern latitudes of Eurasia, 

Formozov (1946) began by noting that, "the presence of this [snow] cover with 

its markedly peculiar physical characteristics sharply changes the conditions of 

existence for plants and particularly animals where [it] falls and stays". This 

observation is equally applicable to other areas that are subject to the 

accumulation of snow (Halfpenny & Ozanne 1989; Green & Osborne 1994; 

Komer 1999; Pruitt & Baskin 2004). Due to its complexity and multi-faceted 

nature, snow is the subject of investigation by a range of disciplines including 

climatology, geology, geomorphology, hydrology and agronomy to name a few. 

Interactions between biota and snow are unusual because snow is a physical 

entity as well as a climatic phenomenon. Formozov (1946) described snow as a 

"periodic mineral" (i.e. combining features of climatic and edaphic factors), and 

suggested that snow be referred to as the chionic or nival (snow) factor to 

recognise its unique role in the biosphere. 

Before considering how snow cover influences small mammals it was necessary 

to consider snow itself, and in particular its physical characteristics and the 

factors that influence its distribution in the landscape. 

2.2 Snow 
Snow is initiated in the atmosphere as ice crystals when supercooled water 

vapour freezes around particulate matter which acts as a nucleating agent. Ice 

crystal formation depends on a number of factors, including the natur~ of the 

nucleating agent, atmospheric temperature and the availability of water vapour, 

all of which affect the type of ice crystal that forms (Mason 1971; Davis 1998). 

Once formed, ice crystals grow and aggregate to form snowflakes, finally 

becoming too heavy to withstand the effect of gravity. The accumulation of 

snow on the ground depends on the conditions which snowflakes encounter after 

formation; for example, snowflakes may melt to form raindrops if exposed to 

warm air as they fall, or may melt on contact with the ground if surface 

temperatures are above 0°C (Seligman 1962; Halfpenny & Ozanne 1989; Davis 

1998). 
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Snow is a catch-all term that has been applied to various forms of solid 

precipitation as it falls, to its agglomeration on the ground or other surfaces, as 

well as to various surface generated features (Hal:tpenny & Ozanne 1989). The 

term 'snow' is thus not very informative from an ecological perspective, and as a 

. consequence it is easy to lose sight of the diversity of snow forms, each of which 

can have unique ecological implications (Formozov 1946; Pruitt 1958, 1970). 

Native peoples who have lived in snow-covered areas for hundreds of years have 

developed more intricate languages to describe the various forms of snow (Table 

2.1 ), some of which are used by snow ecologists in the absence of suitable 

English alternatives (Pruitt 1984; Pruitt & Baskin 2004). Some of these have 

even found their way into more common vernacular, for example the Siberian 

term sastrugi which refers to the aeolian sculpturing of the snow surface. 
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Table 2.1 Inuit and native American terms for various types of snow conditions and their 
English meanings. Reproduced from Pruitt (1960) 

ENGLISH INUIT DINDYE CHIPEWYAN 

KOBUK VALLEY FORT YUKON NORTHERN 
ALASKA ALASKA ALBERTA 

FALLING SNOW ANNIU ZA SIL(CH) 

SNOW THAT COLLECTS ON QALI DE-ZA DE-CHEN-KAY-
TREES SIL(CH) 

SNOW ON THE GROUND API NON-KOT-ZA SIL(CH)-DE-TRAN 

DEPTH HOAR PUKAK ZAl-YA YATH(K)ONA 

WIND-BEATEN SNOW UPSIK SETH( CH) SIL(CH)-T(CH)RAN-
AL 

FLUFFY TAIGA SNOW THEN-Ni-ZEE VATH-THEY-YE-
REE-LAY 

DRIFTING SNOW STQOQ ZA-HE-AH~ TREE NIL(CH)-SEE-NI-
(K)OTH 

SMOOTH SNOW SURFACE SALUMAROAQ 

ROUGH SNOW SURFACE NATATGONAQ 

SUN CRUST SIQIQTIAQ ZA-ES-(CH)A NA-HO-T(CH)RAN 

DRIFT KIMOAQRUK ZA-KE-AN-E-HAE YATH-NEE-ZUS 

SPACE FORMED BETWEEN A~MA~A 
DRIFT AND OBSTRUCTION 

. CAUSING IT 

SHARPLY ETCHED WIND KAIOGLAQ 
ERODED SNOW SURFACE 
(SASTRUGI OF SKAVLER) 

IRREGULAR SURFACE TUMARINYIQ 
CAUSED BY DIFFERENTIAL 
EROSION OF HARD AND 
SOFT LAYERS 

BOWL SHAPED DEPRESSION QAMANIQ (ZH)E-QUIN-ZEE DAY-CHEN-YATH-
IN SNOW AROUND BASE OF DO-DEE 
TREES 

SNOW DEEP ENOUGH TO DET-THLO(K) YATH-THAY-T(R) 
NEED SNOWSHOES AN-Al(CH)-HA 

SPOT BLOWN BARE OF Sl(CH) OH-BEH 
SNOW 

AREA OF DEEP SNOW THAT ZA-KAY-TAK-KOK YATH-THA Y-(AN) 
PERSISTS PERHAPS ALL 
SUMMER 
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2.2.1 Distribution and extent 

Antarctica and parts of Greenland are permanently covered with . snow and ice; 

the ecology of these regions is characterised by a virtual absence of vascular 

plants and consequent low primary productivity, resulting in the dependence by 

endemic animal species on marine food sources. 

The boreal zones of North America and Europe, and the alpine and subalpine 

zones of mountains at various latitudes across the globe, experience snow-free 

conditions for part of the year. The alpine zone occurs above the limit of tree 

growth while the subalpine zone extends below the tree-line to the winter 

snowline. 

The distribution and extent of snow cover is determined by interactions between 

climate, physical geography and vegetation (Mckay & Gray 1981 ). 

Macroclimatic conditions are responsible for landscape-scale patterns of 

vegetation, such as the occurrence of a distinct tree-line between the alpine and 

subalpine zones, and the corresponding but less dramatic forest-taiga boundary in 

the boreal zone; in turn, the distribution of alpine/subalpine or taiga/forest 

vegetation formations influences · the pattern of snow deposition and its 

subsequent changes (Pruitt 1978; Komer 1999). 

In boreal zones where the terrain is relatively flat, uniform snow conditions may 

occur over broad areas as a result of synoptic weather systems (Schemenauer et 

al. 1981; BOM 1993). By contrast, snow distribution in alpine environments is 

far from uniform due to the effects of wind and topography, and in alpine regions 

supercooling may result from localised orographic uplift (Schemenauer et al. 

1981; Davis 1998). Despite these differences between boreal and mountain 

regions, it could be argued that, for example, arctic tundra represents in some 

ways an extensive area of alpine environment at low altitude but high latitude 

(Figure 2.1). 
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Figure 2.1 Alpine life zones across different latitudes. From Korner (1999) 

In snow-covered environments, irregular snow conditions form a mosaic of 

habitats (Fuller et al. 1969) that, like heterogeneous habitats in non-snow 

covered environments, will mean the distribution of flora and fauna is not 

spatially or temporally uniform. 

2.2.2 Snow characteristics and classification 

Scientists have become more aware of the need to distinguish different forms of 

snow and have developed generic systems of classification and characterisation. 

The International Snow Classification System (CSI 1954; Mason 1971) and the 

more detailed systems devised by Nakaya (1954) and Magono and Lee (1966) 

(Figure 2.2) distinguish types of falling snow based on the shape of ice crystals. 

The n~ture of the falling snow to some extent determines the fate of snow once it 

accumulates. For example, the formation of qali (snow collecting on tree 

branches) is dependent on the nature of the snow crystals and the conditions 

under which they are deposited (Pruitt 1958; Halfpenny & Ozanne 1989). Snow 

composed of needle-shaped flakes is more likely to avalanche, as indeed is any 

snow which settles with little internal cohesion (LaChapelle 1985; Halfpenny & 

Ozanne 1989). 

To date, there is no entirely satisfactory system for describing or classifying the 

surface features of deposited snow, because they are produced by a number of 

distinct processes. Halfpenny & Ozanne (1989) recognised nine categories 

including hoar frost, needle ice and several types of surface crust. 
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Once on the ground, snow becomes an even more complex phenomenon, varying 

in depth, density and internal structure as well as interacting with the ground 

surface and other features of the landscape. Because the type of snow depends 

on the climatic conditions prevailing at the time of deposition, the snowpack may 

consist of layers with different characteristics. Consequently, describing 

characteristics of snow on the ground is difficult. A classification system aimed 

at providing an international standard for describing snow on the ground has 

been devised (Colbeck et al. 1992); this system requires eight physical 

characteristics to be recorded for each layer within the snowpack (Table 2.2), so 

its application is laborious and requires considerable specialist expertise. To 

complicate the situation further, snow on the ground is not a static phenomenon, 

but rather is in a constant state of change, so classification using this system is 

only relevant for the time at which it was conducted. 

Table 2.2 Primary physical characteristics of deposited snow. After Colbeck et al (1992) 

Density 

Grain shape 

Feature 

Grain size, greatestextension 

Liquid water content 

Impurities 

Strength (compressive, tensile, shear) 

Hardness index 

Snow temperature 

Unit 

g/cm3 

Visual key 

mm 

% by volume 

% by weight 

Pa 

Depends on instrument (e.g. Rammsonde) 

oc 

An alternative approach by Sturm et al. (1995) describes snow on the ground at 

larger spatial and temporal scales taking into account the climatic conditions as 

well as its physical, thermal and stratigraphic characteristics derived from 

seasonal averages (Table 2.3). Although providing a coarser classification than 

the system of Colbeck et al (1992), its application does not require specialised 

skills or equipment, nor is it as labour intensive. 
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Table 2.3 Snow cover classes and characteristics. From Sturm et al. (1995) 

Snow 
I 

Description Depth Density Number of Temp 
Class Range (g cm-3) Layers Gradient 

(cm) (Ccm"1) 

Tundra Thin windblown snow. Basal layer of depth 10-75 0.38 0-4 -0.59 - -0.39 
hoar, overlain by multiple layers of wind slab. 
Surface sastrugi common, melt features rare. 

Taiga I Thin to moderately deep snow cover, in cold 30-120 0.26 >15 -0.38 - -0.28 
forested regions, relatively unaffected by wind. 

Depth hoar 50- 80% by late winter. 

Alpine I Moderate to thick snow cover, with alternating 75-250 0.25 >15 -0.22 - -0.12 
thick and thin layers. Basal depth hoar 
common, melt features insignificant. 

Maritime I Warm deep snow cover, melt features very 75-500 0.35 >15 -0.18 - -0.07 
common, coarse grained snow due to wetting. 

No depth hoar. 

Ephemeral I Thin, extremely warm, short lived snow cover. 0-50 - 1-3 
Melt features common. Often melts between 

snowfalls. 

Prairie I A thin moderately cold snow cover. 0-50 - <5 
Substantial wind drifting. Wind slabs common. 

Mountain I Highly variable snow, depending on wind and - - Variable 
insolation factors. 



When snow is deposited under cold, and still conditions, its structure can be 

maintained for some time, but even under ideal conditions snow begins to change 

greatly (Halfpenny & Ozanne 1989). Once snow reaches the ground and begins 

to aggregate, bonding between and intertwining of snow crystals changes its 

nature. Wind readily redistributes snow and is able to mechanically change snow 

crystals (Seligman 1962; Mckay & Gray 1981; Halfpenny & Ozanne 1989) . 

. 2.2.3 Metamorphism 

Metamorphism refers to the changes that occur within the snowpack following 

deposition. Three processes are involved: disintegration of individual snow 

crystals and reformation of larger grains (destructive or equitemperature (ET) 

metamorphism), sublimation of water vapour in one stratum and recrystallisation 

in another (constructive or temperature-gradient (TG) metamorphism) and 

melting followed by refreezing (melt-freeze (MF) metamorphism) (de Quervain 

1963; Sommerfeld & LaChapelle 1970; Ruddell 1998). All three processes are 

related to the thermal properties of the snow and the consequent movement of 

water molecules. 

MF metamorphism is characteristic of late winter and early spring when 

temperatures in the snowpack permit melting and subsequent refreezing, 

resulting in an increase in grain size and changes in grain shape and bonding (de 

Quervain 1963). Under suitable conditions and when combined with pressure 

due to the weight of snow, MF metamorphism can produce rteve and fim, forms 

of consolidated snow intermediate between snow and ice (Seligman 1962). 

ET and TG metamorphism occur throughout the winter and can occur 

simultaneously. Which of these processes predominates will depend on the 

vapour pressure gradient in the snowpack, that in turn depends on the vertical 

temperature gradient (Prowse & Owens 1984; Ruddell 1998). ET metamorphism 

occurs when the vapour pressure gradient is low (temperature gradient less than 

10°C m-1) resulting in destruction of snow crystals and the creation of rounded 

ice grains. These then continue to grow as sintering occurs, increasing snow 

density and strength (de Quervain 1963; Ruddell 1998). ET metamorphism 

slows at low temperatures and stops below -40°C (Halfpenny & Ozanne 1989). 
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The critical vapour pressure for TG metamorphism is 5 hPa m-1 (Prowse & 

Owens 1984) which occurs when vertical temperature gradients within the 

snowpack in the range of 10-25°C m-1 are sustained for about one week (Akitaya 

1974; Colbeck 1983; Zhang et al. 1996; Ruddell 1998). Water vapour 

sublimates from the warmer layer and recrystallises in the colder layer, 

producing the characteristic cup-shaped snow crystals that form depth hoar. The 

size of depth hoar crystals is positively correlated to temperature gradients and 

vapour pressures. At the base of the snowpack, greater vapour pressure gradients 

occur at higher temperatures, thus the largest crystals are found there (Halfpenny 

& Ozanne 1989; Sturm & Benson 1997). Depth hoar also may occur at other 

locations in the snowpack, especially if there are ice layers in the snowpack, 

hence the term 'depth hoar' can be somewhat misleading (Seligman 1962). Due 

to their shape, depth hoar crystals do not coalesce, forming a layer with poor 

cohesion and low density. Depth hoar has been thought to play an important role 

in the development of the subnivean space, between the base of the snowpack 

and the ground surface (Pruitt 1960, 1970, 1984; Halfpenny & Ozanne 1989; 

Auerbach & Halfpenny 1991) .. 

2.3 Ecological relationships 
Ecology is the study of organisms and how they interact with other organisms 

and the environment (Halfpenny & Ozanne 1989; Krebs 1994). The ecology of 

organisms in snow-covered environments has received little research attention 

compared with more temperate regions. One reason is that access to these 

environments can be difficult and perilous for researchers with climatic 

conditions often harsh and highly variable. In addition, snow itself can directly 

or indirectly hinder the detection or observation of both fauna and flora. The 

presence of snow does, however, have a significant effect on both the flora and 

fauna of nival areas. 

2.3.1 Flora 

In environments subject to regular snow falls, the important macroclimatic 

factors are temperature and light. Temperature varies with latitude and altitude 

(Figure 2.3); intensity of solar radiation does not vary with elevation per se 

(Komer 1999) but is affected by the depth and duration of snow cover. In terms 
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of plant ecology, snow plays a dual role; it limits primary production by 

preventing solar energy from reaching photosynthetic tissue, but also insulates 

plants from extremely low air temperatures. 

Equator 
0° 5000 m 

I 
•• 6..<> •• 40.0.0. ... ~,----

I 
1.?.~_;?999 .. r:J •••• ~. -----

1 
18° 2000 m ............................ 

I r---~ 

?.~~ . .19.0.0.m ..•..•..•.... ~. -
I 

30° 
... .., tropical sub~ nem. temp. bor. sub- arctic 

20 km trop. arctic 

0° 10° 20° 30° 40° 50° 60° 70° 80° 
Latitude 

0 1 2 3 4 5 6 7 
Distance·c103 km) 

Figure 2.3 The relationship between altitude and latitude with respect to temperature, using 
as an example a hypothetical mountain located on the equator. From Korner (1999). 

Light is critical for providing energy for photosynthesis and, in some cases, 

provides cues for plant reproduction. Light extinction beneath the snow varies in 

response to .the physical properties of the snow, in particular depth and density, 

with 40 cm of low density snow able to prevent almost all light penetration. As 

density increases initially, light penetration is reduced further, however once it 

exceeds 0.50 g cm-3 light tr~smission increases (Marchand 1984). Irrespective 

of light transmission levels, differential transmission through the snow reduces 

the amount of longer wavelengths, including red light used for photosynthesis 

(Evernden & Fuller 1972; Halfpenny & Ozanne 1989). 

Alpine floras are relatively depauperate; individual mountain regions of the 

world have about 300 species of higher plants each, although the actual species 

number differs from region to region (Komer 1999). Tundra and alpine plants, 
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beyond the physiographic limit of tree growth, display a range of morphological 

and physiological adaptations that assist in avoiding the extreme macroclimatic 

conditions in the supranivean environment and compensating for the restricted 

growing season (Komer 1999). Plants are typically compact and low growing 

perennials; characteristic growth forms include dwarf shrubs, cushion plants, 

tussock grasses and plants with prostrate or creeping stems (Pruitt 1978; Komer 

1999; Costin et al. 2000). Many tundra and alpine plants can survive freezing of 

tissues and start growing under snow or at subzero temperatures, and may 

produce flower buds in autumn for the following spring, using carbohydrates 

stored in underground organs, to enable rapid spring growth (Pruitt 1978; Komer 

1999). 

Similar, but less extreme, adaptations are likely to occur in subalpine plant 

species which also experience periods of snow cover and low winter 

temperatures. Non-uniform snow distribution in alpine and subalpine areas can 

have significant localised effects upon the development of vegetation and its 

productivity (Billings & Bliss 1959; Good 1998; Wardlaw 1998; Komer 1999). 

2.3.2 Fauna 

The presence of snow on the landscape has a significant effect upon the ecology 

of animals that exist under these conditions and has exerted a strong influence on 

. the nature of their adaptations (Hoffman 1984). Formozov (1946) provided a 

three-category classification for animals in relation to their responses to snow 

cover. Chionophobes are animals which are not well adapted to snow and have 

little to no ability to exist in its presence, including those animals which either do 

not occur in areas that are subject to seasonal snow cover, or migrate away from 

nival areas during the winter months (Hoffi:nan 1974). Examples include small 

cats Fe/is spp., sand grouse Pterocles spp. and black partridge Francolinus 

francolinus. Chionophiles, in contrast, are those species that inhabit extreme 

snow covered environments and have specific physical, physiological or 

behavioural adaptations that permit them to over winter successfully (Pruitt 

1978). These include species such as the arctic fox Alopex lagopus, ptarmigan 

Lagopus spp., arctic hare Lepus timidus and collared lemming Dicrostonyx 

torquatus. Between these lie the chionophores which, although not specifically 

adapted to snow environments, are able to tolerate and survive moderate nival 
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conditions. Such species include the fox Vulpes vulpes, moose Alces alces, 

reindeer Rangifer terandus, wolf Canis lupus, many voles such as Microtus spp., 

Clethrionomys spp. and others, moles Talpa europaea, and shrews Sorex spp. 

While Formozov's (1946) classification scheme provides a useful paradigm for 

considering the interactions between animals and snow, it is important to 

appreciate that snow cover itself is variable in space and time. In a particularly 

hard winter, conditions may be so harsh that even the best adapted chionophile is 

at risk (Formozov 1946; Pruitt 1960). 

For chionophiles and chionophores, snow becomes an integral part of their 

habitat, thus any factor which affects snow conditions and characteristics is likely 

to have an effect on them as well. This can be seen in the response of barren 

ground caribou Rangifer arcticus to snow cover conditions (Pruitt 1959). This 

species occurs in arctic and subarctic regions of North America which may be 

subject to the presence of snow for· up to eight months of the year. Snow 

represents a substrate that, depending on its density, depth and ability to support 

weight, can influence the distribution of caribou and its ability to obtain forage 

located beneath the snow (Pruitt 1959). Typically this species will occur in areas 

with relatively shallow, soft snow of low density, with areas of harder snow 

acting as "fences" that govern their activities (Pruitt 1960). Over the course of 

winter, herds of caribou move about in response to changing positions of the 

unsuitable snow fences (Pruitt 1959; 1960). 

The snow fence effect also influences the geographic distribution of Canadian 

lynx Lynx canadensis by affecting its ability to hunt its main prey species, the 

snowshoe hare Lepus americanus (Stenseth et al. 2004). In regions with few 

warm spells during winter, snow remains fluffy and soft, conferring an advantage 

on the hare which has a lower ratio of mass to foot surface area - or foot load -

than the lynx (Halfpenny & Ozanne 1989) and thus is more difficult for the latter 

to catch. Snow cover characteristics interact with other factors which, when 

combined, can influence the behaviour and distribution of fauna. For example, 

the interaction of falling snow with tree branches produces qali which affects the 

arboreal activity of red squirrels Tamiasciurus hudsonicus, chickadees Parus 

atricapillus and P. hudsonicus (Pruitt 1958) and marten Martes martes 

(Formozov 1946). 
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The presence of snow creates two distinct environments, supranivean (above the 

snow) and subnivean (below the snow). Large animals are confined to the 

supranivean environment unless they have morphological adaptations that enable 

them to access subnivean resources, for example the ability of caribou and other 

large herbivores to use their hooves to excavate feeding craters. A more extreme 

example is the American marten Martes americana and related mustelids which 

spend a considerable portion of their time on the snow surface but are also able 

to hunt in the subnivean space by virtue of their elongated body shape. As a 

result marten and other mustelids are less energy-efficient and have high 

metabolic rates compared to similar sized mammals (Iversen 1972), requiring 

them to be active predators if they are to maintain energy balance (Buskirk & 

Harlow 1989). 

2.3.3 Small mammals 

Small mammals have become dependent upon the formation and existence of a 

subnivean space during the winter, spending virtually the entire winter beneath 

the snow (Formozov 1946; Pruitt 1984; Halfpenny & Ozanne 1989; Rappold 

1989; Green & Osborne 1994). The subnivean space provides ready access to 

the food supply on which they depend, in contrast to larger mammals which must 

excavate food sources covered by snow, rely on snow-free patches or change diet . 

to utilise more accessible items (Pruitt 1978). 

It is widely accepted that the presence of depth hoar is important in the 

development of the subnivean space, because the low density of this layer allows 

small mammals to dig a network of tunnels and runways through the snow at 

surface level (Pruitt 1960, 1970, 1984; Halfpenny & Ozanne 1989; Auerbach & 

Halfpenny 1991). Boreal small mammals that inhabit underground burrows 

during the snow-free period transfer their activities to the ground surface once 

snow depth reaches 5-10 cm (Formozov 1946). 

The size of the subnivean cavity is dependent upon variations in snow depth and 

the height, density and strength of the underlying vegetation. Even a pasture of 

grass and clover can support the snow about 3 to 8 cm above the ground 

(Coulianos & Johnels 1962). Small mammal distribution and activity can be 

influenced by this, for example the home ranges of long-tailed voles Microtus 
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longicaudus were related · to the characteristics of vegetation especially 

mechanical strength that in tum influenced the amount of snow-free space 

available (Spencer 1984). The mortality rates and density of red-backed voles 

Clethrionomys rutilus were related to vegetation structure with higher survival 

rates over winter found in forested areas apparently due to better subnivean 

conditions (Whitney & Feist 1984), and red-backed voles also tend to avoid areas 

of shallow snow (Pruitt 1960). In addition to the presence of suitable structure, 

the ability for small mammals to remain active in the subnivean space has also 

been attributed to the presence of depth hoar or pukak. This low density layer of 

snow occurring at the snow/ground interface is believed to permit small 

mammals to burrow more freely through the snow and thus facilitate the 

formation of the subnivean space (Pruitt 1984; Halfpenny & Ozanne 1989). 

The subnivean space provides a habitat that is climatically quite distinct from the 

surface environment (Pruitt. 1957; Coulianos & Johnels 1962; Rappold 1998). 

Snow is a good insulator, so once snow cover is sufficiently thick, the 

temperature in the subnivean space is decoupled from the supranivean 

environment. This point, the hiemal threshold, is achieved in freshly fallen snow 

when the cover is 15-50 cm deep (Coulianos & Johnels 1962; Pruitt 1970; 

Halfpenny & Ozanne 1989; Courtin et al. 1991). The temperature in the 

subnivean space remains virtually constant regardless of air temperature, staying 

within a few degrees of :freezing in the subalpine zone but possibly falling 

somewhat lower in the boreal zone (Pruitt 1957; Rappold 1998). The deeper and 

less dense the snowpack, the greater the difference between the supranivean and 

subnivean environments (Penny & Pruitt 1984). If snow cover is not complete, 

however, cold air may enter the subnivean space and thus cause substantial 

temperature variation (Pruitt 1957; Green & Osborne 1994; Green 1998). 

Snow density plays a critical role in the subnivean environment. As snow 

density increases, its ability to insulate is reduced (Marchand 1982; Pruitt 1984). 

With reduced insulation, whether as a result of snow compression or a 

depauperate snow cover, the risk of mortality for small mammals is increased. 

This is due to the ground freezing, making it difficult for animals to forage 

(Formozov 1946). Snowpack with little temperature buffering capacity 

discourages the use of certain locations by mobile animals, and also affects the 
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composition and distribution of plant species (Auerbach & Halfpenny 1991). 

Small mammals are reluctant to burrow through dense snow, thus its presence is 

likely to restrict their distribution (Pruitt 1984). Long-tailed voles Microtus 

longicaudus, for example, are deterred from burrowing through snow when 

density is above 0.15 g cm-3 (Spencer 1984). 

2.4 Impacts and threats 
As in other biomes, humans have an effect on the characteristics and integrity of 

snow-covered areas that, in turn, can affect the flora and fauna of these areas. 

Activities such as the movement of oversnow vehicles and the modification of 

snow for winter-based recreation such as skiing are known to have effects on the 

biota beneath the snow (Fahey & Wardle 1998). These activities can have more 

severe impacts in alpine environments than in the boreal zone. This is because 

most snow-based recreational pursuits (in particular downhill skiing) are 

associated with topographically variable terrain. 

With increasing interest in snow-based recreation, the modification of snow 

conditions within alpine areas could have implications for the long-term 

preservation of native fauna, some of which are only known to occur in these 

areas (Mansergh & Broome 1994). The development of oversnow transport 

routes and the grooming of ski trails has meant that in many alpine areas of the 

world, networks of compressed snow tracks are regularly developed during the 

winter months, particularly in the vicinity of ski resorts (Schmid 1971; Young & 

Boyce 1971; Maysk 1973; Foreman et al. 1976; Keddy et al. 1979; Rixen et al. 

2003). 

Regular compaction of snow can destroy the subnivean space, causing the 

snowpack to rest directly on the ground, and can prevent it from re-forming 

(Green 1998). However, compaction can occur with a single pass of a 

snowmobile, which may compress snow by up to 75% of the total possible by 

subsequent passes of the same machine (Keddy et al. 1979), especially when 

applied to freshly fallen snow with low physical strength (Seligman 1962; Mckay 

& Gray 1981 ). The end result is a layer of snowpack that seasonally modifies the 

subnivean environment in a manner analogous to the division of non-snow 
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habitat by roads or other linear artefacts, separating otherwise contiguous 

habitats and further dividing already fragmented habitat patches (Sanecki 1999). 

The compressive force applied to the snow is a function of the downward force 

and the area over which it is applied. As such, a skier may compress the snow to 

a greater extent than a snowmobile because the latter has less weight per unit 

area due to its wide track (Halfpenny & Ozanne 1989), for example large snow

grooming machines exert a relatively low ground pressure of 0.05 kg cm-2 

(Fahey & Wardle 1998). However, when a subnivean space is present, vehicles 

with large mass can cause the snowpack to collapse and destroy the subnivean 

space (Schmid 1971 ), whereas the impact of a single skier is highly localised. 

The ability of the snowpack to resist compression increases over time since ET 

and MF metamorphism result in increased snowpack density and strength 

(Seligman 1962; de Quervain 1963) and sintering processes add further strength 

(Adam 1981; Langham 1981 ). Therefore, activities that may destroy the 

subnivean space early in the season could have less severe impacts in later winter 

or early spring. 

The compaction of snow has been implicated in the disturbance of subnivean 

thermal conditions (Schmid 1971; Kattelmann 1985; Singh 1999) as. a result of 

the increased thermal conductivity of dense snow (Halfpenny & Ozanne 1989) 

and consequent increase in thermal variability in the subnivean space. The loss 

of thermal stability can lead to a wide range of changes that impact on subnivean 

small mammals, both directly (Green 1988; Halfpenny & Ozanne 1989; Sanecki 

1999) and indirectly through effects on plant physiology and vegetation 

communities (Maysk 1973; Greller et al. 1974; Emers et al. 1995; Pickering & 

Hill 2003), the duration of the growing season (Knight et al. 1979; Price 1985; 

Rixen et al. 2003), the physical properties of soil (Kattelmann 1985; Pesant 

1987) and soil fauna and microflora (Neumann & Merriam 1972; Meyer 1993). 

Physical damage to vegetation can be caused in a number of ways by snow 

modification. Where snow is shallow and vegetation protrudes through the snow 

surface, exposed stems can be broken by oversnow vehicles and skiers (Forbes 

1992; Emers et al. 1995); shrubs with erect growth habits are particularly 

vulnerable due to the brittle nature of their woody tissues (Neumann & Merriam 
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1972; Emers et al. 1995). Long-term changes in species composition have been 

noted in a range of vegetation types as a result of crushing of the snow as well as 

the ~changes in thermal conditions if the overlying snowpack is compressed 

(Greller et al. 1974; Foreman et al. 1976; Keddy et al. 1979; Mosimann 1985; 

Forbes 1992). 

Snow modification is not restricted to grooming and compression. 

Supergrooming, which is designed to extend the ski season by enabling skiing on 

shallow snow, involves clearing of vegetation from ski slopes during the non

snow period and grading the exposed surface to remove boulders and other 

irregularities (Perisher 2000). Snow farming, where snow is moved from sites of 

accumulation to augment locations with poor snow cover, can cause considerable 

damage to vegetation and alter snow cover regimes (G. Sanecki pers. obs). 

Artificial snow is being increasingly used to augment snow cover in ski resorts 

(Kocak & van Gernert 1988; Konig 1998; Rixen et al. 2003). A number of 

issues have emerged regarding the environmental consequences of its widespread 

use. Artificial snow making increases the depth and duration of snow cover 

which can have implications for the phenology of vegetation (Rixen et al. 2003). 

The addition of sterilised bacteria as ice nucleating agents (Kocak & van Gernert 

1988) has raised concerns about potential pathogenic effects on plants (Rixen et 

al. 2003) and other biota (Goodnow et al. 1990). 

At a broader scale, the use of cloud seeding to enhance precipitation either as 

rain or in the form of snow (Bigg 1995) is being applied in various regions (Ryan 

& King 1997). The potential implications of cloud seeding activities are for the 

most part unknown and its use remains controversial (Ryan & King 1997). 

Winter-based activities are not the only possible impacts that may occur in snow 

covered ecosystems. Human activities that serve to modify the environment 

during non-nival periods also may have an impact on the ability of small 

mammals to over winter in the subnivean space, for example, as a result of the 

removal of habitat structure (Mansergh & Broome 1994). Such modifications 

also may occur without human intervention, and may result from changes in 

faunal or floral assemblages. Changes in grazing pressure for example by the 

introduction of exotic herbivores such as rabbits which are not well adapted to 
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nival environments may have an impact on local floristic composition (Green & 

Pickering 2002), as may the invasion of weed species (Sanecki et al. 2003). 

Climate change may exacerbate such impacts (Green & Pickering 2002) as snow 

cover declines in mountain regions (Whetton et al. 1996; Whetton 1998; IPCC 

2001; Hennessy et al. 2003) Hennessy et al. 2003). 

The factors that affect the physical characteristics of snow and its distribution are 

largely universal. Likewise, snow can have a range of generic effects on flora 

and fauna. However, snow cover characteristics and distribution are dependant 

on prevailing climatic conditions in association with a range of other factors. In 

addition, the fauna and flora of the Australian Alps is very different from those 

of other nival areas. This is the subject of the next chapter. 
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3.1 Introduction 
The Australian Alps occur at the south-eastern end of the Great Dividing Range 

and consist of a series of disjunct peaks and plateaux extending from the 

Australian Capital Territory in a generally south-westerly direction through 

southern New South Wales to Victoria. The term "Snowy Mountains" refers to 

the portion of the Australian Alps in New South Wales, which is for the most 

part contained within the Kosciuszko National Park. The Snowy Mountains 

contain the largest portion of contiguous nival area on the Australian mainland. 

What follows is mainly relevant to the Snowy Mountains area, but some aspects 

are also relevant to other parts of the alps. 

The limit of tree growth (the treeline) marks the lower elevational boundary of 

the alpine zone, and lies at about 1800-1900 min the Snowy Mountains (Costin 

1975; Costin et al. 2000), but gradually descends southwards through the 

Victorian Alps where it lies at about 1750 m (Green & Osborne 1994) and is as 

low as 800 m in south-west Tasmania (Kirkpatrick 1997). Most of the highest 

peaks on the Australian mainland, including Mt Kosciuszko (2228m asl) and Mt 

Townsend (2208m asl), occur within the alpine zone of the Snowy Mountains. 

The subalpine zone extends below the treeline to the snowline where typically 

snow remains on the ground for about one month per year (Costin et al. 2000). 

Its lower boundary, at about 1400 m in the Snowy Mountains, is generally 

characterised by a change from woodland to tall montane forest (Costin et al. 

2000). The subalpine zone surrounds the alpine zone in the Snowy Mountains, 

in the Victorian Alps but in Tasmania, the maritime climate means that an alpine 

zone can exist without the necessity of snow and hence the "subalpine" zone is 

less well defined. There are also small areas of subalpine habitats in the vicinity 

of the Barrington Tops north-west of Newcastle that may be subject to the 

occasional accumulation of snow for short periods of time. 

For the purpose of this thesis, I use the term "nival area" to describe the 

combined alpine and subalpine areas in the Snowy Mountains that are subject to 

the accumulation of snow cover for at least one month per year. 
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3.1.1 Geology and geomorphology 

The Snowy Mountains consist of a heavily dissected uplifted peneplain, which 

has been tilted so that it rises steeply in the west and descends gradually to the 

tablelands in the east. The current landforms reflect the geological and 

geomorphic history of the area and consist primarily of Silurian/Devonian 

granites that were intruded into older Ordovician sedimentary strata, and 

· underwent a number of periods of uplift and erosion, most prominently during 

the Tertiary period in which the area reached approximately its present elevation 

(Brown et al. 1969). Erosion of the peneplain was encouraged by fracturing and 

faulting, which resulted in the incision of the long straight stream patterns which 

are evident today (Good 1992; Costin et al. 2000). 

During the Pleistocene period, the eastern highlands were subject to extensive 

periglacial activity while only the highest parts of the ranges were significantly 

affected by glacial ice (Galloway 1963). Some periglacial processes such as 

diurnal frost heave and some solifluction are still evident today, while other 

features such as solifluction terraces, earth hummocks and boulderfields are now 

inactive remnants of earlier more dynamic periglacial processes (Good 1992). 

Soils in the Snowy Mountains are as diverse as the vegetation that they support. 

About 15 great soil groups are now re~ognised and, although some reflect their 

parent material, soils in higher elevations are independent of rock types (Costin 

1954) and have accumulated through aeolian processes (Good 1992) and have 

been mainly influenced by climatic changes since the Pleistocene (Good 1992). 

Alpine soils are typically dominated by organic matter and include alpine humus 

and associated soils. In subalpine areas, transitional alpine humus soils 

predominate in woodland, grassland and heath. Below these levels, podsols 

dominate (Good 1992). 

3.1.2 Climate 

The climate of the Snowy Mountains is characterised by cool to mild summers 

and cold to very cold winters. Precipitation is relatively even throughout the 

year, and falls as snow predominantly during the colder months, although falls 

can occur throughout the year (Good 1992; Davis 1998). 
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Temperatures vary across the altitudinal range such that while the lowest winter 

minimum temperature recorded in the alpine area (Charlotte Pass, 1759m asl) 

was -23.8°C , summer maximum temperatures in lower areas may be 35°C or 

more (Good 1992; Rappold 1998). The north-south orientation of the ranges 

intersects the prevailing west to east weather patterns. The resulting orographic 

effect produces heavy precipitation in the order of about 2800 mm in the alpine 

zone declining towards the east to about 750 to 1800 mm in the subalpine zone 

(Costin 1975; Good 1992). Climate averages for Crackenback (alpine zone, 

1957m asl) and Perisher Valley (subalpine zone, 1735m asl) are shown in Table 

3.1 and Table 3.2. 
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Table 3.1 Climate averages for Crackenback. (Source: Bureau of Meteorology). 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean Daily Max Temp (C 0 ) 15.7 16.4 13.5 9.6 4.7 1.9 0.1 0.5 2.9 6.7 10.1 14.1 

Mean No. Days >= 30 C0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Highest Max Temp (C0 ) 26.4 27.0 25.5 24.8 15.8 12.5 12.4 10.5 15.0 17.0 24.0 26.3 

Mean Daily Min Temp (C0 ) 6.2 7.1 4.9 1.7 -1.5 -3.5 -5.4 -4.9 -3.2 -0.7 1.9 4.8 

Mean No. Days <= 0 C 0 2.7 1.1 2.8 8.9 20.1 24.0 28.6 29.0 25.2 16.6 9.8 4.4 

Lowest Min Temp (C0 ) -7.7 -4.2 -6.7 -9.0 -11.0 -12.5 -14.7 -15.0 -13.4 -8.8 -8.5 -9.0 

Mean 9am Wind Speed (km/hr) 22.8 20.1 20.2 23.4 25.5 25.4 31.3 33.2 31.4 28.1 23.2 25.2 

Mean 3pm Wind Speed (km/hr) 20.0 17.7 18.4 21.5 24.2 25.4 30.8 32.9 30.1 27.7 21.4 22.3 

Mean rainfall (mm) 103.0 91.9 124.1 118.3 141.2 85.8 130.2 134.0 150.8 168.3 162.4 111.1 

Mean No. Raindays 12.3 11.4 13.2 12.5 15.5 13.9 15.2 16.2 15.6 16.7 15.0 11.3 

Highest Monthly Rainfall (mm) 200.6 246.5 246.5 349.5 283.2 269.5 368.4 318.2 362.0 316.0 312.6 240.3 

Lowest Monthly Rainfall (mm) I 36.1 7.3 40.7 10.9 42.3 9.9 8.7 14.8 21.9 55.5 37.6 9.4 



Table 3.2 Climates averages for Perisher Valley. (Source: Bureau of Meteorology). 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean Daily Max Temp (C0 ) 18.2 18.3 15.3 11.3 7.8 3.9 2.4 3.3 5.7 9.3 13.3 15.1 

Mean No. Days >= 30 C0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Highest Max Temp (C0 ) 30.0 27.2 25.4 22.0 18.0 19.0 l0.5 13.0 16.0 21.0 25.5 25.0 

Mean Daily Min Temp (C0 ) 5.7 5.8 3.6 1.0 -1.3 -3.5 ~5.o -4.3 -2.1 0.2 2.1 4.2 

Mean No. Days <= 0 C 0 2.7 2.4 5.6 13.3 18:7 25.1 28.8 27.0 21.7 15.4 8.8 3.3 

Lowest Min Temp (C0 ) -5.0 -7.0 -5.5 -11.3 -9.5 -18.0 -19.5 -15.0 -12.5 -10.8 -8.5 -5.9 

Mean 9am Wind Speed (km/hr) 10.9 9.0 9.0 9.9 10.1 12.6 14.5 15.6 14.9 13.6 11.2 11.2 

Mean 3pm Wind Speed (km/hr) 11.2 9.6 9.6 9.3 10.6 13.0 13.8 15.1 14.6 13.0 11.2 11.4 

Mean rainfall (mm) 98.4 65.3 124.4 121.1 161.3 195.3 204.1 256.9 245.4 214.1 139.9 121.9 

Mean No. Raindays I 8.9 7.7 10.2 11.5 12.8 14.8 14.8 15.5 15.5 14.0 12.9 10.1 

Highest Monthly Rainfall (mm) 182.5 158.6 446.8 278.4 331.0 580.0 445.0 699.0 489.0 411.2 292.0 238.0 

Lowest Monthly Rainfall (mm) 23.0 5.0 26.9 17.1 33.9 54.0 37.0 20.3 82.7 65.0 22.0 26.1 



3.1.3 Snow cover extent and duration 

In Australia, snowpack is rare with the snow covered landscape comprising only 

about one fortieth of the snow covered area of Switzerland (Slatyer et al. 1984). 

In the Snowy Mountains, the distribution of snow is dependent upon a range of 

variables including, most, prominently precipitation and temperature but also 

topography, including elevation, aspect and slope (Good 1992; Davis 1998; 

Osborne et al. 1998; Ruddell 1998). Snow accumulates differentially as a result 

of the snow fence effect in which wind-blown snow is deposited in the calmer 

conditions on the leeward side of slopes causing a greater build up of snow. 

These areas are also subject to lower isolation due to their south-easterly aspect 

and thus have lower rates of ablation (Good 1992). As a result, snowpack 

becomes established in these areas earlier and often persists much longer than 

snowpack in more exposed locations. In some cases, snow patches have been 

known to persist throughout the summer until the following winter (Good 1992; 

Costin et al. 2000). In contrast, locations that receive less snow are more 

exposed to wind and· receive more solar energy and therefore higher rates of 

ablation, generally have poorer snow conditions throughout the year. 

Because of the low relief of the Snowy Mountains compared to mountain ranges 

in other parts of the world, small perturbations in atmospheric conditions can 

have a dramatic effect on the extent and duration of snow cover from one year to 

the next (Davis 1998). During the period 1954-1996, persistent snow cover at 

Spencers Creek (1830m asl) had an average duration of 22.5 weeks and 

maximum snow depth ranged from 39 to 270 cm (Osborne et al. 1998). At 

elevations down to 1528 m, snow cover lasts about 60 days (Slatyer et al. 1984), 

while many areas at even lower elevations are subject to marginal snow 

conditions with thin and patchy snowpack, which in some years may fail to form 

altogether. 
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3.2 Flora and Fauna 

3.2.1 Flora 

The flora of the Snowy Mountains has been the subject of detailed investigation, 

much of which is beyond the scope of this thesis. The following brief 

descriptions are based on Costin (1954); Read (1987); NPWS (1988); Costin et 

al. (2000); Mitchell (2002). 

The alpine area above about 1850 m is dominated by snow grass Poa spp. -

snow daisy Celmisia spp. herbfield and oxylobium Oxylobium ellipticum -

mountain plum-pine Podocarpus lawrencei heathland communities. A number 

of communities such as bogs, fens, feldmarks and sod tussock grasslands occur 

in areas where conditions prove favourable. Twenty-one locally endemic species 

are known to occur in this area (Costin et al. 2000). 

The subalpine area between about 1500 and 1850 m is dominated by snow gum 

Eucalyptus pauciflora - E. niphophila woodland with a dense shrub understorey 

dominated by species of the Oxylobium ellipticum - Podocarpus lawrencei 

alliance of which leafy bossiaea Bossiaea foliosa is the most . common shrub 

species. Woodland is interspersed with heathland and tussock grassland 

communities of similar floristic composition to those in the alpine zone. At its 

lower extremity, the subalpine zone grades into montane forests and woodlands 

dominated by snowgum alliances including E. pauciflora, mountain gum E. 

dalrympleana, manna gum E. viminalis and black sallee E. stellulata, with alpine 

ash E. delegatensis dominating wetter south-east aspects. 

3.2.2 Fauna 

Compared to snow-covered areas in other parts of the world, particularly in the 

northern hemisphere, most of the vertebrate taxa of the nival areas of the 

Australian Alps are quite depauperate. The Snowy Mountains are home to a 

range of fauna including a number of snow-adapted species whose ranges have 

contracted since the Pleistocene and which are now only found in the alpine and 

subalpine areas. 

Larger vertebrate species such as the eastern grey kangaroo Macropus giganteus, 

red-necked wallaby Macropus rufogriesus, swamp wallaby Wallabia bicolor and 

common wombat Vombatus ursinus, as well as the larger possums, are common 
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in lower areas. At higher altitudes, where snowfall becomes a predominant 

feature of the landscape during winter, most of these larger species that are ill 

adapted to snow conditions are absent or only occur sporadically (Green & 

Osborne 1994): 

Species adapted to snow conditions are either those which hibernate, such as 

bats, the echidna Tachyglossus aculeatus and mountain pygmy-possum 

Burramys parvus, or those which remain active throughout the year but are either 

small enough to continue to forage beneath the snow or have other biological or 

ecological adaptations to deal with life above the snow (Green & Osborne 1994). 

Common species of year-round residents include the broad-toothed rat 

Mastacomys fuscus, bush rat Rattus fuscipes, dusky antechinus Antechinus 

swainsonii and agile antechinus A. agilis. All are known to remain active 

throughout the winter in the subnivean space (Carron 1985; Rappold 1989; 

Green 1998; Rappold 1998). 

There are no endemic bird species in the Snowy Mountains, most being common 

or widespread species found in lower areas or long distance migrants which 

return to the mountains during spring and summer as food becomes more 

abundant (NPWS 1988; Green & Osborne 1994). In the treeless alpine zone the 

most common birds are the little raven Corvus mellori and Richard's pipitAnthus 

novaeseelandiae. 

A range of reptile and amphibian spedes has been recorded, but the number of 

species decreases with altitude. Only three families of reptiles and two frog 

species are known to occur above the snowline (Green & Osborne 1994). Apart 

from the native galaxias Galaxias olidus the stream fish fauna in the mountains is 

dominated by the introduced salmonid species in many areas. 

Like their vertebrate counterparts, many invertebrates in the Snowy Mountains 

are physically adapted to, or have life cycles that suit, the prevailing conditions 

in the mountains. Although little is known about the invertebrate fauna of the 

Snowy Mountains (NPWS 1988), some 979 species in 75 families have been 

recorded in the alpine area (Green 1987). 

A number of threatened or uncommon species occur in the Snowy Mountains 

and include the broad-toothed rat Mastacomys fuscus, smoky mouse Pseudomys 
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fumeus, mountain pygmy-possum Burramys parvus, spotted-tailed quoll 

Dasyurus maculatus, olive whistler Pachycephala olivacea, Latham's srupe 

Gallinago hardwicki and the corroboree frog Pseudophryne corroboree. 

Introduced species include the house mouse Mus musculus, black rat Rattus 

rattus, rabbit Oryctolagus cuniculus, hare Lepus europaeus, fox Vulpes vulpes, 

dog Canis familiaris and cat F elis catus. 

3.3 Small mammal fauna 
The alpine and subalpine areas of Australia have relatively few species of small 

mammals when compared with other parts of south-eastern Australia (Carron 

1985; Green & Osborne 1994). Only the mountain pygmy-possum Burramys 

parvus is endemic to the alpine and subalpine areas of Australia, while in the 

Snowy Mountains the broad-toothed rat Mastacomys fuscus can be found down 

to 1000 m while the other small mammal fauna are also found extensively at 

lower elevations. The following species represent the main species known to 

remain active in the subnivean space. 

3.3.1 Bush rat 

The bush rat Rattus fuscipes assimilis is a "new endemic" murid rodent with a 

relatively wide distribution across south-eastern Australia. It is one of several 

subspecies that occur in Australia from northern Queensland to the south-west of 

Western Australia (Lunney 1995). It occurs throughout the alpine and subalpine 

zones and is perhaps the most common small mammal in nival areas of the 

Snowy Mountains (Green & Osborne 1994). For males, head/body length and 

tail length average 165 and 158 mm respectively, and they have an average 

weight of about 125g. Females weigh 10-20 percent less (Lunney 1995). 

This species is omnivorous and its diet can vary considerably between 

populations and over time (Watts 1977; Woodside 1983). In the nival area, its 

diet is diverse, and includes fungi and invertebrates as well as a range of plant 

material from both monocotyledons and dicotyledons including seeds, flowers, 

fruit, bark and leaves (Carron et al. 1990). This species is actually the most 

insectivorous of all the native rats in Australia (Lunney 1995). Because of its 

catholic diet, it can readily adapt to changing food abundance and while during 
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the warmer months fungi make up the bulk of the diet, monocotyledons 

predominate during the winter (Carron et al. 1990). 

In nival areas, breeding occurs in spring and summer during which several litters 

may be produced (Carron 1985; Green & Osborne 1994), but in other parts of its 

range breeding can occur throughout the year (Lunney 1995). Adults generally 

live for about one year, but some may survive to breed over ·two seasons. 

Throughout its range, R. fuscipes is mainly nocturnal and mostly found in 

structurally complex habitats including heathlands, woodland and boulderfields 

that provide adequate cover (Hall & Lee 1982; Woodside 1983; Carron 1985). 

Bush rats generally inhabit burrows throughout the year; just before winter an 

increased level of burrow excavation is observed which is thought to be an 

attempt to increase the depth of the burrow in preparation for the onset of colder 

wet weather (Green & Osborne 1994). 

3.3.2 Broad-toothed Rat 

The broad-toothed rat Mastacomys fuscus is an "old endemic" murid rodent 

whose name refers to the relative size of its molars which are larger than its 

palate. It has a head and body length of about 161 mm, a tail length of 116 mm 

and an average weight of 122g (Rappold 1995). Its distribution is confined to 

areas above 1000 m in New South Wales, but occurs down to sea level in 

Victoria and Tasmania (Finlayson 1933; Rappold 1995; Green & Osborne 2003). 

The diet of M fuscus consists primarily of grasses with occasional contributions 

of seeds and the leaves of shrubs and does not vary significantly in the nival 

period (Carron et al. 1990; Rappold 1995). Large grass nests are constructed 

under shrubs or logs and several individuals nest communally during winter; a 

system of runways leads from the nest to preferred feeding grounds (Carron 

1985). Although occurring throughout the nival areas in a range of habitat types 

including woodland and heathlancjs its largest concentrations are observed in tall 

wet heaths in proximity to watercourses and suitable forage (Carron 1985; Green 

& Osborne 1994). 

Breeding occurs between December and March and usually two litters of young 

can be produced in a season. The young do not reproduce until the following 

year (Rappold 1995). 
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A key indicator of the occurrence of this species is the presence of characteristic 

runways and distinctive droppings, which are especially apparent after the 

disappearance of snow and often occur in association with the above-ground 

grass nests used during the winter (Green & Osborne 1994). The nesting above 

ground during winter is thought to predispose them to increased predation by 

foxes Vulpes vulpes that may excavate down to the nests through the snowpack. 

This, combined with the fact that, compared to R. fuscipes this species is quite 

docile, has led to broad-toothed rats making a disproportionate contribution of 

the diet of foxes (Green 2002). 

3.3.3 Dusky Antechinus 

The dusky antechinus Antechinus swainsonii is the larger of the two small 

dasyurid marsupials to inhabit the Snowy Mountains. Like R. fuscipes it is 

relatively widespread in south-eastern Australia, occurring from sea level 

through to the summit of Mt Kosciuszko at 2228 m. Head and body length 

averages 120 mm for males and 110 mm for females (Dickman et al. 1983). Tail 

length averages 107 mm and 92 mm for males and females respectively and 

males are characteristically heavier than females but converging at higher 

altitudes (averaging 45g and 40g respectively) (Dickman et al. 1983). Females 

that survive into their second year will also grow to about 60g (Green & Osborne 

1994). 

This species is fossorial and its diet primarily consists of invertebrates including 

Coleoptera, Lepidoptera, Hemiptera, Orthoptera and Blattodea, but it will also 

take small vertebrates such as lizards (Green 1989). This species has been 

described variously as crepuscular or nocturnal (Green & Osborne 1994) and . 

diurnal (Carron 1985; Dickman 1995). Habitat preference is similar to that of R. 

fascipes in that it is generally associated with complex understorey vegetation 

and litter in which it forages for most of its invertebrate food. It is a solitary 

animal, nesting in leaf- and bark-lined burrows under rocks, in logs and in tree 

hollows (Dickman et al. 1983; Green & Crowley 1989). 

Populations of this species, and indeed the smaller A. agilis, fluctuate greatly 

across seasons, due in part to the unique life history of this species. Breeding is 

highly synchronised, with mating occurring in early to mid September in the 
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Snowy Mountains, often while the ground is still covered in snow (Green & 

Crowley 1989; Green & Osborne 1994). Within about 2 to 3 weeks of mating all 

of the males die (Dickman 1982). The· capture of a few very large male A. 

swainsonii during summer in recent years (G. Sanecki and K. Green, unpublished 

data) suggest that this fate may not befall some males who appear to survive into 

a second year. 

3.3.4 Agile Antechinus 

The agile antechinus A. agilis was originally considered to be the brown 

antechinus A. stuartii until distinguished by electrophoretic methods (Dickman et 

al. 1988). Head and body length averages about 95 mm for males and 88 mm for 

females, and males are characteristically heavier than females, averaging about 

25g and 18g respectively (Dickman et al. 1983). The distribution of A. agilis is 

widespread in south-eastern New South Wales and Victoria, overlapping with the 

range of A. stuartii in the vicinity of Jervis Bay (Dickman et al. 1988). 

Unlike A. swainsonii, A. agilis is scansorial, but at higher elevations and in the 

absence of trees, (and when snow cover is present), it will forage on the ground. 

It is thought that this places A. agilis at a disadvantage as it is unable to compete 

successfully with A. swainsonii in the· absence of sufficient vertical strata, as 

occurs above the treeline or during winter when it is restricted to the subnivean 

space (Dickman et al. 1983). A. agilis has been recorded at altitudes over 2000 

m but above the treeline it is almost restricted to rocky habitats (Green & 

Osborne 1979). This species is mainly nocturnal throughout the year, and its 

main food consist of a range of invertebrates most of which are derived from 

trees. At higher elevations once restricted to ground level its diet more closely 

resembles that of A. swainsonii (Dickman et al. 1983; Green 1989) 

Mating takes place around the same time as for A. swainsonii and, like its larger 

counterpart, males die within a few weeks of mating, and only about 20% of 

females survive until the following year (Wood 1970). Unlike A. swainsonii, A. 

agilis nests communally in leaf-lined nests in tree hollows, logs or underground 

(Green & Crowley 1989; Green & Osborne 1994) which is thought to 

substantially reduce their energy needs. 
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3.3.5 Mountain Pygmy-possum 

The mountain pygmy-possum Burramys parvus (Marsupialia: Burramyidae) is a 

true endemic of the alpine and subalpine zone of the Australian Alps and is the 

only species of small mammal in Australia whose known range is entirely 

contained within the nival area (Mansergh & Broome 1994). The distribution of 

B. parvus is extremely limited, occurring within a total area of no more than 500 

km.2 above about 1400 m; specimens have been found at the summit of Mt 

Kosciuszko at 2228m (Calaby 1995). It is most commonly found in 

boulderfields of periglacial origin, and the total habitat available to B. parvus is 

estimated at approximately 10 km.2• 

Originally described from fossil :fragments in 1895, it was considered to be 

extinct until a live specimen was captured in a ski lodge in the Victorian Alps in 

1966 but first found in the wild in the Snowy Mountains. Fossil evidence 

indicates that this species was once more widespread, particularly during periods 

of glacial advance when the snowline was considerably lower than it is today. It 

is thought that its current limited distribution is due in part to the contraction of 

the snowline to its present level (Mansergh & Broome 1994). Males are slightly 

larger than their female counterparts, with a head and body length of 115 mm, 

tail length of 148 mm and weighing about 43g, compared to 100 mm, 140 mm 

and 40g for females (Calaby 1995). 

During the non-nival period, B. parvus is omnivorous with insects comprising 

the largest component of the diet, especially in the breeding season (Mansergh et 

al. 1990). Unlike the other small mammal species of the nival areas that remain 

active throughout the year, B. parvus is a true hibernator and therefore all but 

inactive throughout the winter months, except during short bouts of waking when 

it may feed from cached food reserves or forage in the vicinity of its nest 

(Broome 1989; Mansergh & Broome 1994). Their presence of B. Parvus 

remains in fox scats collected during winter suggests that winter activity may be 

greater than generally thought (Green & Osborne 1981). Its favoured habitats 

are in rocky areas such as boulderfields, but it has been occasionally found in 

other habitats including heath and woodland (Mansergh 1984; Mansergh & 

Broome 1994). 
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Breeding occurs during spring as pouch young are present during November and 

December, and litters of four are usual (Calaby 1995). B. parvus is relatively 

long-lived compared to other small mammals, with some females surviving up to 

four years in the wild (Mansergh 1984). 

3.3.6 Other species 

Other species of small mammals are known to occur in the nival zones . but 

remain uncommon. The introduced black rat Rattus rattus and common house 

mouse Mus musculus have been noted to occur in both the subalpine and alpine 

zones but their occurrence is generally associated with man-made structures. 

Mus musculus has been recorded in mountain huts, whilst R. rattus is more likely 

to be found in the vicinity of ski resorts (Green & Osborne 1994). Native 

species, including the eastern pygmy-possum Ceratetus nanus, water rat 

Hydromys chrysogaster and the smoky mouse Pseudomys fumeus, occur 

sporadically at the lower margins of the subalpine zone although the water rat 

has been observed at locations above 1700 m (G. Sanecki pers obs). The 

distribution of the smoky mouse is poorly known and although it may occur 

more widely, it is only known from a few sites in Victoria and the Australian 

Capital Territory. Although these species are not major components of nival 

ecosystems in Australia, their presence is of particular interest especially when 

considering the possible implications of changing snow cover re~mes, and the 

possibility that with decreasing snow cover they may become more common 

(Green & Pickering 2002; Hughes 2003). 

3.3. 7 Small mammals and snow 

Although there is a considerable body of work on small mammal species in 

Australia and to a lesser extent in the Snowy Mountains, relatively few studies 

have considered the biology of these species during the nival period and in 

particular in relation to snow cover. What is known is therefore drawn from a 

few studies and the extrapolation of results from overseas studies and 

observations. 

One of the key tenets of snow ecology is the role snow plays in decoupling the 

subnivean environment from harsh supranivean conditions (Pruitt 1957, 1960, 

1984; Halfpenny & Ozanne 1989; Auerbach & flalfpenny 1991), because, 
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depending on its density and thickness, the snow layer is a relatively . good 

insulator (Marchand 1982). This also has been a key aspect of ecological 

thinking in the nival areas of Australia (Carron 1985; Rappold 1989; Green 

1998). Like their northern hemisphere counterparts, small mammals in 

Australian nival areas spend the winter months beneath the snow in the 

subnivean space (Green 1998). Although it has been demonstrated that a simil~ 

decoupling of the subnivean and supranivean environment occurs in the 

Australian Alps and it is likely that small mammals derive benefit from the 

thermally stable environment provided by the subnivean space (Carron 1985; 

Green 1988; Rappold 1989), there is evidence to suggest that the responses of 

small mammals to snow in Australia are not the same as those of animals 

occurring at higher latitudes and altitudes in the northern hemisphere. In 

particular, it is possible that due to our milder climatic regime, the thermal 

stability of the subnivean space may not be as crucial to permit successful over

wintering. 

Burramys parvus has received considerable recent attention because it is one of 

the handful of true hibernating mammalian species in Australia. This species 

hibernates in or close to boulderfields and can remain inactive for up to seven 

months of the year within underground hibernacula that maintain ambient 

temperatures of 1.5 - 3°C (Walter 1996; Kortner & Geiser 1998; Walter & 

Broome 1998). Periodic arousal occurs during winter, although the energetic 

costs of arousal are believed to be disadvantageous to their survival (Walter 

1996). Of the small mammal fauna in the mountains, this species is arguably the 

most dependent on the presence of adequate snow cover to provide efficient 

thermal buffering (Walter 1996). 

Of the remaining small mammal ·fauna, the occurrence of R. fuscipes and A. 

swainsonii in the subnivean space was first reported in a general survey of fauna 

above 1500 m (Osborne et al. 1979). Rattus fuscipes also was captured on the 

snow surface, and its over snow movenient subsequently described from the 

presence of tracks in the snow (Osborne 1980). Over snow movement by small 

mammals is governed by the presence of access holes to and from the subnivean 

space, the distances travelled over snow increasing in areas devoid of trees where 

access holes are sparse (Green 2000). 
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Carron (1985) captured R.fascipes, Mfascus and A. swainsonii in the subnivean 

space as part of a comprehensive study of their ecology, indicating that all three 

are relatively active over winter. Using life history and behavioural adaptations 

as an indicator of how well adapted they were to snow cover, she considered that 

M fascus was the best adapted and. R. fuscipes the least well adapted, while A. 

swainsonii was intermediate between the two, describing the former as K

selected and the latter two as r-selected. These life history strategies are reflected 

in the demography of the three species; M fuscus with its lower fecundity show 

less dramatic fluctuations through the year, in contrast to the other two species 

that show a rapid increase in population size each spring and summer, followed 

by a dramatic decline through autumn and winter (Carron 1985; Green 1988; 

Rappold 1989, 1998). 

Specific responses to snow by each species are not well known. In contrast to 

overseas workers who note that small mammals generally avoid areas of shallow 

snow (Pruitt 1984; Halfpenny & Ozanne 1989; Auerbach & Halfpenny 1991), 

small mammal detections in Australia were correlated with shallow snow depths 

(Carron 1985). However, these findings were based on a winter trapping grid of 

only 30 points located at Smiggin Holes, thus any extrapolation beyond this scale 

needs to be viewed conservatively. 

The movement of small mammals in the subnivean space is also poorly 

understood and observations are conflicting in some cases. For example, 

trapping results indicated that M fuscus was relatively active beneath the snow 

and that its movements were similar to those of R. fuscipes (Carron 1985). 

However, radio telemetry showed that M. fuscus was all but inactive throughout 

the nival period, apart from brief periods foraging in proximity to a communal 

nest (Bubela et al. 1991). There is an indication that snow cover provides 

protection from predators and enables Antechinus swainsonii to exploit habitats 

such as grasslands that are not used by them when snow is absent (Green & 

Crowley 1989) 
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3.4 . Human history 
Indigenous Australian peoples are thought to have been visited the alpine and 

subalpine areas for several thousand years (Flood 1980). Unlike indigenous 

peoples in other parts of the world, there is no indication that Australian 

aboriginals had significant interactions with the area during the nival period, 

instead retreating to lower lying and wanner areas. Their main activities in the 

Alps occurred during the wanner months when tpbes gathered to feast upon 

Bogong moths that congregated in the mountains during the summer (Flood 

1980; Good 1992). 

With the arrival of Europeans in Australia, it was not long before settlement and 

expansion saw the Alps subject to new influences. The mountains had been 

recorded by several expeditionary parties commencing with Currie and Ovens in 

1832 (Good 1992). Some of the most significant early investigations of the 

mountains were made by two Polish men, Dr John Lhotsky and Count Edmund 

Strezlecki. Lhotsky explored the ·area from the east and is thought to have 

possibly reached the highest peaks first, but it is Strezlecki who is credited with 

identifying and naming the highest peak on the mainland (Mt Kosciuszko) after 

the Polish patriot and hero of the American war of independence, Tadeusz 

Kosciuszko. This is a somewhat bemusing event given that New South Wales 

was a colony of the British Empire at the time; one must assume that the colonial 

leaders were not aware ofKosciuszko's exploits. 

Scientific investigation in the mountains also become more common with 

workers such as William Clarke, Ferdinand von Mueller, Richard Helms and 

Clement Wragge making major contributions in the 19th Century. In the 20th 

century, the work of Alec Costin and others resulted in improved understanding 

of the importance and fragility of alpine biota and contributed significantly to the 

eventual demise of grazing in the high country of New South Wales and the 

conservation of the alpine and subalpine areas. 

Earliest· records indicate that the Snowy Mountains were being used by graziers 

in the early 1800's; most famed was the 'Excelsior' run of James Spencer which 

took in much of the alpine and subalpine areas of the Snowy Mountains in the 

early part of the century. Gold was discovered in the Alps in the vicinity of 

Kiandra resulting in an influx of tens of thousands of diggers to the region in the 
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1860's, but the rush had ended by 1906. Grazing continued to be the main 

activity in the Australian Alps, albeit under increasing levels of scrutiny and 

control, until 1949 when the de~elopment of the Snowy Mountains Hydro

electric Scheme commenced and ushered in its eventual demise. Grazing was 

eliminated from the Snowy Mountains because of concerns that the hydro 

scheme would be rendered useless as a result of excessive siltation from the 

erosion caused by livestock and the practices of graziers including yearly burning 

to stimulate fresh grass growth. In the southern parts of the Australian Alps 

located in Victoria, grazing still continues in some areas. 

Skiing in the Alps was first documented in the Kiandra goldfields where the first 

ski club in the world was formed by miners and others who found enjoyment and 

sport in fixing planks of wood to their boots and sliding down the slopes 

(Hueneke 1994). The construction of the Snowy Mountains Scheme, involving 

the ~ployment of high numbers of migrants from areas of Europe where skiing 

is a major winter sport, spurred the establishment of the recreational ski industry 

in Australia. 

Today the combination of summer tourism to the high peaks of the Australian 

Alps and winter recreation form the basis of visitation to the area which is for the 

most part contained within the Kosciuszko National Park. Apart from park and 

ski resort operations, Snowy Hydro Ltd is perhaps the predominant non

conservation organisation functioning in the park. It undertakes a range of 

activities related to the operations of the Snowy Mountains Scheme and 

maintains a range of infrastructure and associated management access trails. 

3.5 Significance and threats 
The Australian Alps comprise a biologically diverse and unique part of Australia 

and indeed the world. Kosciuszko National Park is a UNESCO Biosphere 

Reserve. 

The Snowy Mountains today maintain their unique character and fauna, but there 

are a number of threats that could have far reaching implications, not only for the 

integrity and conservation values of the Alps themselves but also potentially for 

the people and industries that have come to rely upon the mountains as a source. 

of energy, water and income. 
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The geographical position of the Australian Alps combined with the low height 

of the mountains means that the nival climate is a rather marginal one with large 

variations in snow cover from year to year. It is therefore likely that this region 

will be one of the first to reflect any sign of climate change (Davis 1998; Green 

& Pickering 2002). Impacts and threats to the mountains are likely to be similar 

to those in other nival areas ~utlined in the previous chapter. More specifically, 

however, with decreasing snow cover, the ski industry will become more 

marginal over time, with some studies suggesting that in a worst case scenario 

there will be no possibility of supporting a ski industry by 2070 (Konig 1998; 

Whetton 1998). Additionally, climate change resulting in declining snow cover 

and changes to hydrological regimes may have a significant impact on the 

operation of the Snowy Mountains Hydro-electric Scheme and flow-on 

implications for downstream users of waters such as irrigators and urban areas 

that rely on water released from the system (SMHEA 1993). 

The Australian Alps are climatically considerably milder when compared ·to 

other nival areas especially higher northern hemisphere latitudes. Except for B. 

parvus the small mammal fauna are not restricted to the nival areas of Australia. 

Almost nothing is known about their distribution and behaviour in the subnivean 

space, but there are some indications that their responses may not be the same as 

species from colder areas. Effective conservation and management requires a 

good understanding of the ecology of the organisms in the alps throughout the 

year. With snow cover being a substantial factor in the alps it is important to 

understand its role in the ecology of various organisms. The work that follows 

was undertaken in an attempt to fill in the gaps in knowledge regarding the 

distribution and behaviour of small mammals in the subnivean space. 
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4.1 Abstract 
In nival areas, snow plays an important role in the ecology of flora and fauna, but 

is highly variable in depth, structure and other characteristics over a whole range 

of spatial and temporal scales. Australian research on snow ecology has relied 

upon, but has also sometimes been misled by, overseas research when incorrect 

assumptions have been made about the characteristics of Australian snow when 

compared to snow in other areas. One of the reasons for this is the lack of a 

suitable generic system that could easily be applied by researchers to classify 

snow cover. 

We provide a description of the structural and thermal characteristics of snow 

cover in the Snowy Mountains of south-eastern Australia. We then use these to 

classify Australian snow cover using the classification system developed by 

Sturm et al (1995). Using this system, the snow cover that occurs in the main 

alpine and subalpine region of the Snowy Mountains is classified primarily as 

maritime in areas where there is sufficient accumulation, and as ephemeral at 

lower elevations and on ablating aspects. Maritime snow is generally deep (> 

100 cm), with a density >0.30 gcm-3• The snow-ground interface is maintained 

within 1 °C of freezing and relatively high air temperatures promote destructive 

metamorphism throughout the winter. The formation of depth hoar, which is 

considered to be important in facilitating the development of the subnivean 

space, does not occur under these conditions. 

Ephemeral snow is characterised by warm shallow snow that often melts before 

new snow is deposited. Basal melt is a common feature of snow cover in the 

Snowy Mountains throughout most of the winter. 

These findings have implications for the correct interpretation of research into 

the role of snow in ecological processes, both in Australia and elsewhere. We 

reappraise the processes responsible for the formation of the subnivean space 

under Australian snow conditions and discuss the importance of these processes 

for understanding the ecology of fauna in the subnivean space. 

We propose that ecological researchers working in snow-covered areas need to 

provide a more explicit description of the snow conditions in which their work is 

undertaken. Where possible, the description should include the type· of snow 
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cover conditions using a relevant classification system, or as a minimum, should 

include a description of basic structural and thermal properties of the snow pack 

that would allow other researchers to view the work in an appropriate context. 
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4.2 Introduction 
The pres~ce of snow in the landscape is a significant factor in the ecology of 

organisms (Formozov 1946; Pruitt 1960, 1984a; Halfpenny & Ozanne 1989; 

Green & Osborne 1994; Stenseth et al. 2004). Despite the considerable literature 

on snow itself and, to a lesser extent, on its· influence in the biosphere, the study 

of the ecological aspects of snow remains a relatively underdeveloped discipline 

(Halfpenny & Ozanne 1989). 

In Australia, the area subject to seasonal snow cover lasting at least 2 months 

comprises about 1675 km2, or about 0.02 % of the mainland (Green 1998a). 

Nevertheless, Australian alpine and subalpine areas have developed a unique 

biota characterised by considerable endemism (Green & Osborne 1994; 

Mansergh & Broome 1994; Costin et al. 2000). As might be expected, snow

related research is less developed in Australia compared with regions where 

snow plays a much greater role in landscapes and the lives of human inhabitants. 

As a result, the understanding of snow ecology in Australia has been influenced 

by (and is to some extent reliant on) research undertaken overseas, especially in 

the northern hemisphere where studies are usually conducted at higher latitudes 

and/or elevations than in Australia. The transfer of northern-hemisphere research 

to Australia (or any other place for that matter) without due consideration of the 

possible differences in snow cover characteristics has the potential to create 

problems and lead to spurious assumptions and research conclusions. Any 

consequent misconceptions can affect tll;e study of organisms that interact with 

snow at some point in their life cycles. 

A further complicating factor is the tendency of research on snow as a physical 

phenomenon to be relatively divorced from considerations of snow as an 

ecological attribute. For example, although a number of workers have described 

meteorological and hydrological aspects of snow under Australian conditions 

(Costin et al. 1961; Brown & Millner 1989; Davis 1998), the physical 

characteristics of Australian snow (Ruddell 1998), the spatial distribution and 

duration of snowpack in the Australian Alps (Slatyer et al. 1984; Duus 1992; 

Osborne et al. 1998), the effects of climate change (Ruddell et al. 1990; Whetton 

et al. 1996; Whetton 1998) and the likely effects of climate change on the ski 

industry (Galloway 1988; Konig 1998; Hennessy et al. 2003), few of these 
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authors make more than a passing reference to the ecological implications of 

their findings. Conversely, in ecological research, snow cover is sometimes 

treated as if independent of local or regional influences, something that is clearly 

not the case (Berry 1981; Mckay & Gray 1981; Davis 1998). Where ecologists 

have attempted to integrate· snow as a factor into the study of alpine and 

subalpine biota (Green 1982; Carron 1985; Green 1988; Bubela et al. 1991; 

Rappold 1998), some aspects of snow cover characteristics are described. 

However, researchers have not used their data to make meaningful comparisons 

between Australian snow cover conditions and those occurring elsewhere, 

especially those from regions from which we have derived so much of our 

understanding of nival ecology processes. The study of small mammals in the 

subnivean space provides a case in point. 

The importance of snow for insulating the subnivean environment, thereby 

maintaining relatively stable and warm temperatures in comparison to the 

supranivean environment, has been acknowledged by Australian (Carron 1985; 

Green 1988; Rappold 1989, 1998) and overseas researchers (Formozov 1946; 

Pruitt 1960; Marchand 1982; Pruitt 1984a; Halfpenny & Ozanne 1989; Auerbach 

& Halfpenny 1991). The presence of depth hoar is considered an important 

factor in subnivean space development (Coulianos & Johnels 1962; Pruitt 

1984b). Depth hoar is low-density snow, generally occurring at lower parts of 

the snow pack, and is thought to enable subnivean fauna to move beneath the 

snow by burrowing within this layer (Pruitt 1984a; Halfpenny & Ozanne 1989; 

Auerbach & Halfpenny 1991). Australian researchers have assumed, based on 

overseas research, that depth hoar is a factor contributing to the formation of the 

subnivean space, particularly in the absence of suitable vegetation or other 

structures that are important in its development (Green & Osborne 1994; Green 

1998b ). If depth hoar was found not to occur under Australian snow conditions, 

then conclusions about the extent of the subnivean space would need to be re

examined. 

Assumptions such as these regarding the characteristics of snow cover highlight 

the need for a suitable classification scheme that would facilitate cross-regional 

classification of snow cover. While the systems of Magono & Lee (1966) and 

Colbeck et al. (1992) provide a framework for classifying snow based on crystal 
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structure and other features, these systems are not useful for describing classes of 

snow cover at landscape scales (Sturm et al. 1995). Early attempts to devise 

large-scale snow classification systems did not gain wide acceptance because 

they were based upon different combinations of descriptors and consisted of 

different numbers of classes that did not necessarily correspond to classes in 

other systems; in general they were often of little use beyond a local area. For a 

review and summary of these systems see Sturm et al. (1995). 

Sturm et al. (1995) noted the need for a more generic system for classifying 

various types of snow cover. They developed a system, which relies on. 

observable snow cover properties and uses characteristics that are easily 

measured in the field or readily available from other sources. 

This paper has two objectives. The first is to provide a brief description of the 

characteristics of Australian snow using data collected during the winters of 2002 

and 2003. The second is to use these data supplemented by additional records to 

classify Australian snow according to the system developed by Sturm et al. 

(1995), hereafter referred to as the Sturm system, thus placing Australian snow 

cover in a more global context. In doing this, we hope to improve the general 

understanding of the characteristics of Australian snow cover and how they relate 

to other areas. We also discuss some of the ecological considerations arising 

from our findings. We highlight how it is possible to use readily available, data 

and/or data that are easily collected during a research program to provide a 

classification of characteristics of snow cover within which the work was 

undertaken. This, in turn, will enable others to make more informed assessments 

of research outcomes. 

4.3 Methods 

4.3.1 The Sturm classification system 

The details of the Sturm system are given in Sturm et al. (1995). What follows is 

an overview of the system including the elements used for this paper. 

The Sturm system has six main classes that Sturm et al. (1995) suggest generally 

reflect the natural grouping of snow cover characteristics. These include: tundra, 

taiga, alpine, maritime, ephemeral and prairie (Figures 4.1 and 4.2). A seventh 

"mountain" class is defmed as a highly variable snow cover greatly influenced by 
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varying solar radiation and wind patterns, often resulting in a number of different 

snow types within a relatively small area. 
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Figure 4.1 Stratigraphic and textural profiles of snow cover classes. From Sturm et al. 
(1995) 

The names chosen for the classes, although referring to either a vegetation type 

or geographic location, do not imply that the classification is based upon the 

location of the snow cover or its relationship to a specific biome. The system 

relies solely on the physical characteristics of snow for classification; thus, 

''taiga" or "maritime" snow may occur in locations that are not taiga or close to 

the sea respectively, but have characteristics of the particular snow cover type. 

For example, "taiga" snow cover is of thin to ·moderate depth, its stratigraphic 

profile is dominated by depth hoar, and it exhibits few melt features. These 

characteristics reflect the particular conditions under which the snow was 

deposited and then remained. In the case of taiga snow cover, we would expect 
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it to occur in cold climates with consistently low average winter temperatures, 

Taiga snow also would not be greatly· affected by wind; a reflection of its 

tendency to occur in forested areas. 
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Figure 4.2 Attributes of snow cover classes. From Sturm et al. (1995) 

The Sturm system was designed to permit classification without the need to dig 

snow pits and make stratigraphic observations, which can be time consuming and 

often require special skills and equipment. The classification can be undertaken 

using average winter values for four variables (snow depth, air temperature, 

snow-ground interface temperature and density) that are easily measured in the 

field, or available from routine snow course observations and weather stations. 

A fifth parameter, vertical temperature gradient, is based on a combination of 

snow depth and the difference between air and snow-ground interface 

temperature. 
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Unlike the system presented by Colbeck et al.(1992), the Sturm system is 

designed not only to consider aspects of snow properties within each snow layer, 

but also consider the sequence of layers in a stratigraphic manner, their 

interaction and lateral variation. In addition, it takes account of variations in 

characteristics of snow cover with time and in response to a number of factors 

including climate, weather and wind history both during and after deposition. 

4.3.2 The study area 

Our study area was located within the Snowy Mountains, Kosciuszko National 

Park (36.0°S 148.3°E) in south-eastern Australia. This region includes the 

Australian continent's highest mountain Mount Kosciuszko (36.456°S, 

148.264°E, 2228 m). The Snowy Mountains include most of the northern extent 

of the Australian Alps and encompass the largest contiguous areas of alpine and 

subalpine habitats on the Australian mainland. 

The Australian Alps consist of a disjunct series of peaks and plateaux extending 

for about 350 km in a generally north-easterly direction from their southern 

extent at about 37.5°S 146°E to 35°S 149°E (Figure 4.3). Snow cover that 

remains on the ground for any length of time occurs in two main zones. The 

alpine zone, defined as the area above the tree line, is characterised by 

continuous· snow cover for at least four months per year. The subalpine zone lies 

between the upper limit of the tree line and the snowline at its lower limit. It is 

subject to continuous snow cover for at least one month (Green 1998a; Costin et 

al. 2000). The tree line occurs at 1800-1900 min the north, descending to 1750 

m in the south. In a similar manner, the subalpine zone commences at a lower 

elevation in the south (around 1400 m) but occurs above 1500-1600 m in the 

north (Green 1998b). The treeless alpine area ha.S a diverse assemblage of 

vegetation communities, but is typically characterised by herbfields and 

heathlands (Costin et al. 2000). The subalpine area is a mosaic of woodlands 

dominated by Snow Gum, Eucalyptus pauciflora, wet and dry heathlands and 

tussock grassland (Green & Osborne 1994). 
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Figure 4.3 The Australian Alps showing the area above 1200 m. 

4.3.3 Data collection 

Data for this study were collected as part of a larger project investigating the 

distribution of small mammals in relation to snow cover in Kosciuszko National 

Park. These field measurements were supplemented with data obtained from 

routine snow course and meteorological records; 

Snow depth measurements were made during 2002 at 72 sites, stratified across 

four main vegetation types (dry heath, wet heath, woodland and tussock 

grassland), three elevation levels (1501-1600 m, 1601-1700 m and 1701-1800 m) 

and two aspects (ablating and accumulating). Ablating aspects in Kosciuszko 

National Park are generally north-westerly and usually have lower snow depths 

than accumulating aspects. This is because the latter are subject to lower 

· insolation levels and, due to the prevailing north-westerly winds, act as a snow. 
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fence (Green & Osborne 1994). Of the 72 sites sampled in this study in 2002, 24 

at the highest elevations were resampled in 2003. 

Each site comprised three plots approximately 10 m apart; each plot consisted of 

a 200 cm timber stake marked at 10 cm intervals to enable measurement of snow 

depth to the nearest 5 cm. Snow depth was recorded on a weekly basis during 

2002 and fortnightly or monthly during 2003. In addition, weekly snow depth 

data recorded at Spencers Creek snow course (36.43°S, 148.35°E, 1830 m) were 

obtained from Snowy Hydro Limited. 

Average air temperatures for each of the study sites were derived from the 

ESOCLIM module of ANUCLIM 5.1 (Houlder et af. 2000). ANUCLIM 

generates climate estimates for selected locations from thin plate smoothing 

spline surfaces fitted to continent-wide monthly mean meteorological data using 

ANUSPLIN 4.3 (Hutchinson 1991, 2004). 

Air temperature averages for Spencers Creek were calculated from data obtained 

from the Thredbo Crackenback Automatic Weather Station (AWS) (36.49°S, 

148.29°E, 1957 m). Although about 8.9 km from the Spencers Creek snow 

course, this is one ofonly two stations from which regular long-term records are 

available for the study region. The other, located at Perisher Valley (36.40°S, 

148.41°E), is closer to Spencers Creek (6.4 km), and located at an elevation of 

1735 m. We considered that air temperatures taken from the higher station 

would provide more conservative calculations than the lower one. 

During 2002, snow-ground interface temperatures were measured using 24 

Thermocron® iButton temperature loggers (Dallas Semiconductor Corp.), 

located throughout the 72 study sites. Temperature loggers were installed at all 

24·high elevation sites sampled in 2003. Loggers were held in open-ended PVC 

tubes placed randomly within the study sites. Interface temperatures were taken 

for the period when continuous snow cover was present at a particular site. 

Snow density data were recorded weekly and were available only for Spencers 

Creek. It is likely that snow density at field sites (all of which are at lower 

elevations than Spencers Creek) would exceed the values at Spencers Creek. 

This is because of higher rates of snowpack metamorphism, especially on 

ablating aspects where higher insolation often causes considerable melt-refreeze 
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metamorphism (Mckay & Gray 1981 ). Therefore, the Spencers Creek data 

provide a conservative estimate of density. 

The Sturm system is based on average winter values for each parameter. 

Previous studies (Carron et al. 1990; Bubela & Rappold 1993; Rappold 1998) 

have defined winter as being the time when "snow permanently covered the 

ground" from June to September. In this study, we have defined the winter 

period as occurring from June to August (92 days) and data from this period only 

were used for classifying snow classes. 

4.4 Results 
Table 4.1 summarises the key snow cover characteristics of the three elevation 

classes sampled in this study. Despite the expected variations in snow depth and 

duration with vegetation type, aspect and elevation, and some year-to-year 

variations in depth and duration at the same site, there was little difference in 

snow/ground interface temperature among the sites. Average interface 

temperatures were consistently above freezing throughout winter. This was 

regardless of air temperature, indicating no significant thermal connectivity 

between the supranivean and subnivean environments. Snow-ground interface 

temperatures at Spencers Creek also were above freezing (Table 4.2). 
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Table 4.1 Average values for snow cover during 2002-03 on different aspects at 3 elevation 
levels in Kosciuszko National Park. Accum =accumulating aspects; Ablate= ablating 

aspects 

Air Temp (°C) 

June 

July 

August 

Average 

Snow/Ground Interface 
Temp(°C) 

Maximum Snow Depth (cm) 

Snow Duration (weeks) 

1501-1600m 

Accum Ablate 

0.8 0.9 

-0.4 -0.3 

0.5 0.6 

0.3 0.4 

0.4 0.8 

48 35 

11.6 5.8 

1601-1700m 1701-1800m 

Accum Ablate Accum Ablate 

0.4 0.4 -0.3 -0.4 

-0.9 -0.9 -1.8 -1.8 

-0.1 -0.2 -1.2 -1.3 

-0.2 -0.2 -1.1 -1.2 

0.7 0.6 0.8 0.8 

83 71 118 116 

16.5 10.3 19.6 18.9 

As expected, air temperatures at the study sites decreased with increasing 

elevation. This temperature decrease was less than 1 °C for each 100 m increase 

in elevation, corresponding to the temperature lapse rate of 0.6°C per 100 m. 

Average winter air temperature was above -2°C for the study sites (Table 4.1) 

and these estimates were consistent with data recorded at Thredbo A WS (Table 

4.2 Spencers Creek). 

Table 4.2 compares the Spencers Creek snow characteristics with those of the 

four main snow classes presented by Stunn et al. (1995). Spencers Creek was 

selected because it is one of the few sites from which long-term records are 

available, including snow density data. Characteristics of snow at Spencers 

Creek most closely resemble the maritime snow class. Stunp. et a/.(1995) noted 

that snow-ground interface temperatures for maritime snow are generally within 

1 °C of freezing and often display basal melt features which would be expected at 

temperatures above freezing. The vertical temperature gradient also most closely 

corresponds to the maritime class. Snow depth falls within the values expected 

for the maritime class, but also the alpine class. 
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Table 4.2 Range of average winter values for the main snow classes defined by Sturm et al. (1995), and Spencers Creek, Kosciuszko National Park. 

Tundra Taiga Alpine Maritime Spencers 

Snow Density (g cm"1) 0.25-0.32 0.20-0.22 0.24-0.28 0.26-0.33 0.36 

Air Temp (°C) -27.52 - -19.84 -19.92 - -13.86 -12.63 - -10.19 -9.62 - -4.53 -1.61 

Snow/Ground Interface Temp (°C) -22.00 - -8.45 -6.60 - -2.37 -1.28 - -0.49 -0.34 -0.16 0.62 

Snow Depth (cm) 10.0 - 30.0 37.9-61.2 64.7 -124.9 80.7 -158.8 108.1 

Vertical Temp Gradient (°C cm"1) -0.59 - -0.39 -0.38 - -0.28 -0.22 - -0.12 -0.18 - -0.07 -0.05 



However, the latter exhibits a greater vertical temperature gradient resulting from 

lower average air temperatures. Spencers Creek air temperatures are in fact 

higher than the maritime air temperatures presented by Sturm et al. (1995). 

Snow density falls within the maritime range early in the winter (Figure 4.4) but 

increases steadily throughout the season due to the progressive development of 

melt features and ice layers within the snow pack (G Sanecki, unpublished data) 

producing a snow cover that is coarse grained and often wet. This is not ollly as 

a result of melt, but also rain, which can occur throughout the winter in the 

Australian Alps. 
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Figure 4.4 Average snow density 2002-03 by month at Spencers Creek 

Sturm et al. (1995) described ephemeral snow as a thin, warm snow cover of 

short duration (<2 months) that often begins to melt shortly after deposition and 

is often subject to considerable basal melting. In this study, average winter air 

and snow-ground interface temperatures at the lowest elevation sites were above 

freezing throughout winter, suggesting conditions conducive to daytime 

snowmelt with intermittent night-time freezing. Snow duration at all ablating 

and many accumulating low elevation sites was less than 2 months. In some 

cases snow remained on the ground for only 2 weeks. Snow depth for all low 

elevation sites did not exceed 50 cm in depth. On ablating aspects at the mid

elevation level, there also were a number of sites where snow depth was less than 
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50 cm and duration was less than 2 months. We conclude that snow at low 

elevations should be classed as ephemeral. It is likely that at mid elevations, and 

perhaps even higher elevations during some years, snow cover also may be 

ephemeral in nature particularly on ablating aspects. 

4.5 Discussion 
Based upon the classification system of Sturm et al. (1995) andthe data gathered 

in this study, snow cover at higher elevations in Australia most closely resembles 

maritime snow. However, since Australian snow displays some divergent 

characteristics, it is possible that snow of this type represents a separate "warm-· 

temperate-tropical" category where daytime temperatures are above 0°C and 

night time temperatures below 0°C. These conditions favour destructive 

metamorphism and melt-freeze metamorphism as the dominant processes 

responsible for changes in the snowpack over time. In terms of areal extent in 

the Snowy Mountains, based on snow depth and duration data presented by 

Slatyer et al. (1984), it is likely that the snow occurring over at least half of the 

area subject to snow cover fulfils the criteria of ephemeral snow. 

There appears to be little merit to the argument that a mountain classification is 

more appropriate for Australian snow to account for variations due to topography 

and other factors. Mountain snow is highly variable over relatively small 

geographic scales. For example, different classes could be described on the 

opposite sides of a ridge, whereas our data show that snow cover characteristics 

are quite similar over a range of elevations and aspects. 

Similarly, the alpine snow cover class of Sturm et al. (1995) is not appropriate in 

the Snowy Mountains because both air and snow-ground interface temperatures 

are considerably lower, while the temperature gradient is much greater, than 

values observed in this study. Our study did not consider data from elevations 

above 1800 m, and it ·might be possible that alpine snow occurs at higher 

elevations. We do not consider this to be likely as unpublished data from snow 

courses in the alpine areas of Kosciuszko National Park show similar snow 

density trends to Spencers Creek (G Sanecki, unpublished data). Moreover, 

incidental measurements taken at a range of high elevation sites over a six year 
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period indicate that snow-ground interface temperatures almost never fall below 

0°C (G Sanecki, unpublished data). 

Observations from other locations are consistent with data from Kosciuszko 

National Park and indicate that our conclusions about snow classes in the Snowy 

Mountains can safely he extrapolated generally across the Australian Alps. 

Fifty-four years of records from the Rocky Valley snow course in the Bogong 

High Plains (36.87°S, 147.28°E, 1650 m), show similar snow densities to those 

at Spencers Creek (Figure 4.5). In addition, the two sites have similar pattems of 

snow accumulation (Osborne et al. 1998). Snow pit investigations at the summit 

of Mt Buller (37.13°S, 146.42°E, 1809 m) showed snow pack temperatures were 

at, or only slightly lower than, 0°C (Ruddell 1998). Average winter air 

temperatures also are consistent with, or higher than, those in Kosciuszko 

National Park (G Sanecki, unpublished data). 
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Figure 4.5 Average snow density at Rocky Valley snow course 1935-89. From Ruddell et al. 
(1990) 

In the past, a lack of information about Australian snow conditions has led to 

misunderstandings and misinterpretations of research findings, based on 

assumptions that data collected elsewhere accurately reflect the situation in 

Australian alpine and suhalpine areas. For example, Green & Osborne (1994) 

suggest that in areas of limited plant cover, the suhnivean space forms due to 
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temperature gradient (TG) metamorphism whereby water vapour (formed by 

sublimation) is transported from the warmer lower snow levels to the cooler 

upper layers where it recrystallises, resulting in the development of deep layers 

of low-density depth hoar. However, TG metamorphism and thus the formation 

of depth hoar requires the snowpack to be subjected to a vertical temperature 

gradient in excess of 0.10-0.25°C cm-1 for about one week (Akitaya 1974; 

Colbeck 1983; Ruddell 1998). This process is more characteristic of taiga snow 

(and alpine snow to a lesser extent). Data presented in this paper indicate that 

conditions conducive to the formation of taiga snow do not occur in Australia. 

In the absence of a thermal gradient within a snowpack that is close to or just 

below 0°C, destructive metamorphism becomes the dominant process for 

creating structure in the vertical stratigraphy (Langham 1981; Ruddell 1998). 

This type of metamorphism involves the transformation of snow crystals into 

more compact grains that, when combined by sintering processes, causes an 

increase in the hardness and density of the snowpack. As air temperatures 

increase and the snowpack further warms, melt-freeze metamorphism becomes 

predominant, further increasing snowpack density (Langham 1981 ). These 

processes explain the relatively high density of Australian snow cover and the 

progressive increase in density throughout the nival period. The formation of the 

subnivean space in areas with little vegetation structure in Australia is probably 

related to basal melting processes as a result of snow-ground interface 

temperatures above 0°C. 

Overseas studies have shown that the area of subnivean space can be quite 

extensive (Coulianos & Johnels 1962) and it is thought that depth hoar is an 

important factor in the ecology of winter active subnivean fauna (Pruitt 1984a; 

Halfpenny & Ozanne 1989; Auerbach & Halfpenny 1991). A low-density depth 

hoar layer does not form in Australian snow fields. Rather, the typically high 

snow density is likely to provide a mechanical hindrance to small mammals that 

move under the snow. Snow density is above 0.3g cm-3 throughout the snow 

profile for most of the season in Australia (Figure 4.5), (Ruddell 1998). 

However, small mammals have difficulty digging through snow with densities 

greater than 0.21g cm-3 (Spencer 1984). It follows that during winter in 

Australian alpine and subalpine regions, small mammals are confined to areas 
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where physical processes other than TG metamorphism form a subnivean space 

of sufficient size to enable movement. Similarly, any investigation of 

supranivean fauna would need to consider the implications of higher snow 

density and mechanical strength for the movement of fauna across the snow and 

their ability to dig into it. · 

Our study also has relevance to studies investigating the possible impact of snow 

compression by human activity, including the movement of over-snow vehicles 

or snow grooming on subnivean environments (Schmid 1971; Keddy et al. 1979; 

Adam 1981; Halfpenny & Ozanne 1989; Green 1998b, 2000). The nature of the 

impact is a function of the type of snow cover present at a particular site. Once it 

has achieved a certain depth, maritime snow has greater mechanical strength than 

ephemeral snow due to its depth and density. Consequently, it is probably less 

susceptible to compression for prolonged periods during the nival period, 

particularly mid to late season (Langham 1981 ). 

Snow ecology needs more consistent snow classification. The Sturm system has 

been shown to provide a logical and practical paradigm for the description and 

interpretation of Australian snow cover conditions· from an ecological point of 

view. However, the use of the Sturm system would also benefit from the 

inclusion of more global data to improve its generic applicability and strengthen 

its ecological significance. 
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5.1 Abstract 
The study of winter-active small mammals beneath the snowpack has proved 

challenging for researchers because of their relative inaccessibility. We present a 

technique that permits the detection of small mammals active in the subnivean 

space using hair tubes. Hair tubes are cylindrical or funnel-shaped structures 

containing suitable bait and an adhesive surface that harvests hairs from small 

mammals as they attempt to reach the bait. Hair tubes eliminate many of the 

difficulties often associated with live trapping and permit the expansion of 

systematic sampling to larger scales than allowed by conventional live-trapping 

methods. 

The technique was used successfully to detect five small mammal species in the 

subnivean space in Kosciuszko National Park (KNP) in south-eastern Australia. 

These included the common bush-rat, Rattus fuscipes, the dusky and agile 

antechinus, Antechinus swainsonii and A. agilis, the broad-toothed rat, 

Mastacomys fuscus and the mountain pygmy possum, Burramys parvus . 

. Although hair tubes have a number of limitations, such as_ not providing a 

measure of abundance or the ability to identify individual animals, we believe 

that these limitations are balanced by the ability for the technique to be used at 

any spatial scale. Hair tubes are particularly suited to studies of animal 

distribution at the landscape-scale, because many hair tubes· can be deployed and 

dispersed over large areas, and monitored on a regular basis by a small team of 

researchers. The technique also makes use of readily available, low-cost 

materials and could be easily adapted to a range of conditions and different target 

species. 

Keywords: Ecology, distribution, landscape-scale 
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5.2 Introduction 
Snow can play an important role in the ecology of small mammals (Formozov 

1946; Pruitt 1960, 1984). While acting as a mechanical barrier that can hinder 

small mammal movement, it also can provide protection from predators and play 

a crucial role in maintaining relatively warm and stable subnivean conditions that 

are quite distinct from those above the snowpack. Given the ecological 

significance of snow cover (Pruitt 1984), it is important that studies of small 

mammals be undertaken throughout the year and particularly during the nival 

period when the interactions between small mammals and characteristics ofsnow 

cover can be quantified. However, the very presence of snow can hinder the 

study of small mammals. Snow provides a barrier through which research 

workers must gain and maintain access to the subnivean space, often for long 

periods of time (Carron 1985). 

The study of small mammals beneath the snow has been undertaken in a number 

of ways, including the use of indirect methods (Spencer 1984), interpolative 

methods (Green 1988) and direct observation (Cranford 1984; Merritt 1984; 

Carron 1985; Bubela et al. 1991). These direct methods have generally involved 

live-trapping to capture small mammals in the subnivean space by placing traps 

through the snowpack at ground level, often with the aid of chimney-like 

structures that provide access to the subnivean space without causing repeated 

disturbance to the snowpack. Although generally successful, live-trapping 

methods are labour intensive, particularly as traps need to be closely monitored 

to ensure the welfare of trapped animals. 

To date, there has not been a field method to permit systematic, landscape-scale 

sampling of small mammals in the subnivean space. Our aim was to develop a 

technique that would permit investigation of the distribution of small mammals 

in relation to the spatial and temporal variation of snow cover over large areas, 

conditions which make live-trapping impractical. In this paper, we summarise 

the methods that have been used for detecting small mammals active in the 

subnivean space, provide an overview of hair tube methods as they have been 

applied in non-nival areas in Australia, and describe a new technique using hair 

tubes for surveys beneath the snow. 
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5.2.1 Subnivean trapping methods for small mammals 

Soper ( 1944) described several methods for the capture of small mammals during 

winter, including the use of traps in rudimentary excavated trenches in the snow 

to capture rodents such as voles that were active in the subniveanspace. Later, 

Pruitt (1959) described a method for live-trapping small mammals in the taiga 

forests of Canada during winter. This involved using wooden chimneys that 

allowed repeated access to the subnivean space without causing frequent 

disturbance to the snowpack. The chimneys, fitted with hinged lids to prevent 

the ingress of snow, allowed traps to be lowered through the snowpack to the 

ground, where a gap at the bottom of the chimney permitted animals access to 

the traps. This general technique has since been further modified and applied by 

others (Fay 1960; Iverson & Turner 1969; Merritt & Merritt 1978; Keller et al. 

1982). 

In Australia, a number of workers have used modified· drums or plastic bins for 

subnivean trapping. Carron (1985)used 60-1 steel drums that had one end cut off 

to serve as a removable lid and a hole cut at the base of the drum to permit access 

for small mammals to traps placed in the drum. The larger 205-1 steel drums 

used by Mansergh (1985) had their bases removed and were suspended slightly 

above ground level providing better access to traps. Later, 55-1 plastic garbage 

bins were used which were lighter, cheaper and more readily available. Holes 

were cut at the base of the bins which were attached to timber stakes prior to the 

onset of snow (Green 1988; Sanecki 1999). 

Live-trapping in the snow can lead to high rates of mortality of trapped animals 

(Beuch 1974), although the .use of insulation in traps can reduce this (Green 

1988; Sanecki 1999). Although drums and bins are an improvement over simply 

laying traps in excavated snow pits, they are still susceptible to.being buried by 

falling or drifting snow. It is then necessary to remove snow to expose the lid 

before traps can be checked. This results in extra work for the researcher and 

potentially increases the time animals spend inside traps. Some workers have 

overcome this problem by using taller chimneys (Merritt & Merritt 1978; 

Cranford 1984). Continued excavation also can change the snowpack, and in our 

experience, even careful digging can still cause considerable disruption to the 

snow surrounding trapping bins and potentially affect trapping success. These 
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factors, combined with the fact that small mammal populations are often at their 

lowest during the winter, mean that subnivean trapping success is low when 

compared to trapping when snow cover is not present (Carron 1985; Green 1988; 

Sanecki 1999). As a result, live-trapping methods have been restricted to 

relatively small spatial scales. Carron (1985) undertook her winter sampling 

across 30 trap points with an inter-trap interval of 10 m, while Green (1988) used 

40 trap points at a similar interval. More recently, groups of grids with 120 bins 

(Sanecki 1999) and 80 bins (G. Sanecki, unpublished data) have been established 

for small mammal studies in the Australian Alps. However, even these larger 

grids do not extend over much more than a few hectares, which limits inference 

for studies of distribution patterns over larger spatial scales. 

Despite the drawbacks of live-trapping, it remains the only method suitable for 

studies requiring collection of data about individual animals, and live-trapping 

will continue to be widely used for fine scale behavioural and population studies. 

5.2.2 Hair tubes 

Hair tubes have been widely used in non-nival areas of Australia since the 1970s 

for detecting small- to medium-sized mammals (Mills et al. 2002). Suckling 

(1978) used hair tubes to detect arboreal mammals; later Scotts and Craig (1988) 

modified the design to facilitate the detection of rare terrestrial animals. Since 

then, a number of studies have used hair tubes either as the principal survey 

method or in combination with other techniques (Laidlaw & Wilson 1989; Scotts 

& Seebeck 1989; Lindenmayer et al. 1994; Lindenmayer et al. 1999a). One of 

the reasons for the rise in popularity of hair tubes is their low cost and the ability 

to deploy them over larger areas without the concerns that are typically 

associated with live-trapping. Hair tubes can be left in place for days or even 

weeks at a time before collection, and their use can make it much easier to 

conduct systematic sampling of replicate study sites in the landscape. Their use 

may also enable the detection of species not readily captured by trapping 

(Sutherland 1997). 

Hair tube design has varied over time. However, their principal mode of 

operation remains the same. A tube or funnel-shaped.structure of an appropriate 

size is baited with a suitable attractant for the target species. An adhesive 
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substance such as double-sided tape is applied to the inside surfaces of the hair 

tube. Samples of hair are collected from animals that come into contact with the 

adhesive, and the hairs can then be identified by inspection with a compound 

microscope (Mayer 1952; Brunner & Coman 1974; Moore 1988; Teerink 1991; 

Brunner & Triggs 2002). A consideration for workers in regions that do not have 

a guide to the identification of mammalian hair would be the need to create a 

reference collection of hair samples from target species. As such, it will 

probably be necessary to conduct live-trapping prior to the use of hair tubes. 

Even if a suitable ·guide is available, we still recommend the creation of a 

reference collection to allow workers to become familiar with their target 

species, while also ensuring that there are no local mo.rphological differences. 

Early hair tube designs consisted of a 100-mm-long PVC tube with a diameter of 

30 mm. Double-sided tape was attached on the upper inside surface of each end 

and bait was held in place in the middle of the tube (Suckling 1978). The 

modifications of Scotts and Craig · (1988) included the enlargement of the 

entrance diameter and the provision of a mesh chamber to prevent the bait being 

removed too quickly. Broome (personal communication) modified the design of 

Suckling (1978) by moulding a dimple into the upper surface of each end of the 

tube. This created a constriction that the entering animal would have to squeeze 

under, and seemed to provide a better geometry for hair collection from smaller 

species. More recently, a moulded plastic hair funnel using purpose designed 

adhesive wafers has been manufactured commercially (Lindenmayer et al. 

1999b). 

Hair tubes have a number of limitations. Perhaps the most important is that the 

technique cannot distinguish the number of individuals of the same species 

visiting a tube (Lindenmayer et al., 1994). Other limitations and biases are 

similar to those of live-trapping (Sutherland 1997), including the fact that the 

technique cannot tell you anything about animals that may be present, but which 

do not enter the hair tubes. There has also been some dispute as to the 

effectiveness of hair tubes to survey a range of species. Lindenmayer et al. 

(1999b) showed that hair tube size and configuration determined the types of 

animals that could be detected. Although Mills et al. (2002) found that hair tubes 

of different designs frequently detected common small mammal species, they 
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were not particularly successful at detecting rare medium-sized species. Despite 

these concerns, hair tubes remain a cost-effective way of systematically 

surveying small mammals at landscape-scales (Mills et al. 2002). 

5.3 Materials and methods 

5.3.1 Subnivean hair tube survey methods 

5.3.1.1 Snow tubes 

Snow tubes are analogous to trap chimneys in that by being erected before 

winter, they permit the later placement of hair tubes into the subnivean space 

without disturbing the snowpack. Green (1997) successfully used PVC snow 

tubes to allow the winter placement of small pitfall traps, which were used to 

sample subnivean invertebrates. That technique formed the basis for the design 

described here. 

Snow tubes were cut from 6-m lengths of 90-mm diameter PVC drainage pipe. 

The pipe was cut into 1-m lengths which then had holes drilled at both ends so 

that they could be attached to timber garden stakes. Tubes were installed before 

the onset of snow and wired to a 2-m-long hardwood garden stake so that there 

was a 50-mm gap between the base of the tube and the ground. The rough 

surface of the garden stake and the weight of the snow tube meant that any · 

downward slippage of the pipe was counteracted by the camming action of the 

tie wires. The top of each tube was covered with a 30 x 30-cm square of strong 

plastic sheet and fastened with nylon cable ties (Figure 5.1). Tubes that were cut 

from the flanged ends of the 6 m pipe were reserved for use as extensions at sites 

where snow depth was greater than 1 m, so that the tubes continued to protrude 

through the snow (Figure 5.2). 

This arrangement proved robust under the conditions prevailing during our 

sampling, but modifications such as additional guy wires may be required in high 

wind areas or under different snow conditions. Our snow tubes became more 

secure as snow depth increased. and melt-freeze metamorphism increased the 

snowpack density at KNP. We found that exposed areas with shallow snow 

cover were most susceptible to being damaged by strong winds. We also found 

that it was counter-productive to install longer tubes at sites where snow cover 

were expected to exceed 1 m in height. Tall snow tubes were difficult to work 
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with when snow cover was relatively shallow at the beginning and end of winter. 

They also were more susceptible to being damaged by strong winds. It was easy 

to extend snow tubes as snow ~eight increased and then shorten them again as it 

declined. 

Figure 5.1 Snow tube in a grassland habitat. Note the 50 mm gap between the base of the 
snow tube and the ground. 
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Figure 5.2 Snow tube with a one metre extension fitted. Snow surface is approximately 120 
cm above the ground. 

5.3.1.2 Hair tubes 

The effectiveness of a hair tube depends on its ability to entice an animal to come 

into contact with the adhesive surface and leave a hair sample. Therefore, 

important design considerations include tube diameter, location of the adhesive, 

and accessibility of the bait. The design of our hair tube was also driven by the 

need for it to fit within the 90-mm-diameter snow tubes. Our target species 

include those known to be active in the subnivean space in south-eastern 

Australia and include the bush rat, Rattus fuscipes, dusky antechinus, Antechinus 

swainsonii, agile antechinus, A. agilis and broad-toothed rat, Mastacomys fuscus. 

Of these, the two rodent species are the largest with an average body length of 

165 mm for R. fuscipes and 161 mm for M. fuscus, and have an average mass of 

125 g (Rappold 1995; Lunney 1995). 

Adult A. swainsonii are approximately 122 mm in length and, the males weigh 

about 65 g and females 41 g (Dickman 1995). Antechinus agilis is the smallest 

of the four species with the larger males weighing on average only 35 g (Green 
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& Osborne 1994). After testing a range of tube sizes and configurations we 

found the following to be best suited to the target species whilst fitting into the 

snow tube. Workers in other areas would need to experiment with tube size and 

configuration to suit their target species. 

Hair tubes were constructed from 40-mm 88° PVC plumbing elbows 

manufactured by iPlex Pipelines. These elbows have flanged ends into which a 

plug could be inserted and held securely in place. The elbows were drilled at one 

end with two holes 2.5 mm in diameter through which wire could be passed to 

fasten the bait plug. Bait plugs were machined from softwood timber such as 

pine. Lengths of timber were machined in a lathe to create a rod with a diameter 

of 41 mm. This was the diameter that provided the best fit into the flange of the 

PVC elbow. The rod was then sliced into 20-mm thick discs. Each wooden disc 

was then drilled with a 20-mm drill bit to a depth of about 10 mm to create a well 

into which bait could be placed (Figure 5.3). 

Figure 5.3 Subnivean hair tube. The assembled tube on the left is in the position it would be 
in at the base of the snow tube. 
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The assembly of hair tubes was completed by inserting the plug so that the bait 

well was facing downwards into the elbow and attaching double-sided tape to the 

upper inside surface of the other opening so that it would come into contact with 

the nape or back of an animal entering the tube. The wooden bait plug held a 

mixture of rolled oats, peanut butter and honey. The plug was held in place by a 

piece of wire passed through the two predrilled holes and twisted together to 

form a loop. A 1.5-m length of straight wire left inside the snow tubes between 

uses was attached to the top of the loop to enable the hair tube to be lowered 

down the snow tube into the subnivean space. 

No attempt was made to prevent the bait being removed from the bait plugs. We 

initially tested a number of alternatives, including the use of wire mesh of 

different strengths to contain the bait material within the plug. In each case, we 

found that the wire was gnawed through and the bait removed. When we did 

devise a method to prevent removal of the bait, we found that the animals turned 

their attention to other parts of the hair tube including the double-sided tape and 

wire assembly. The latter, which held the device together, was crucial to our 

ability to place and retrieve the hair tubes from the snow tube. Therefore, we 

found it preferable that the bait be removed in preference to the hair tube being 

damaged. We suggest, however, that the inclusion of a barrier to prevent bait 

removal be made on a case-by-case basis depending on the species likely to be 

encountered. 

Setting of hair tubes in the field involved removing the plastic covering and the 

length of wire from the snow tubes. The hair tube was attached to the wire and 

the double-sided tape backing was removed. The hair tube was then lowered into 

the snow tube so that it rested on the ground. The retrieval wire could then be 

bent over the top of the snow tube ·thus preventing excessive movement of the 

hair tube, and the plastic cover replaced to prevent snow entering the snow tube 

(Figure 5.4). 
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Figure 5.4 Schematic diagram showing details of hair tube placement within the snow tube. 
The hair tube is lowered down the snow tube using a length of 2 mm wire. Once the hair 
tube is resting on the ground the wire is bent over the upper edge of the snow tube and 

the plastic lid is replaced. 

5.4 Results and discussion 
The first systematic application of our hair tubing technique was during 2002 

when 216 snow tubes were established as part of a study investigating the 

distribution of small mammals in relation to snow cover in Kosciuszko National 

Park, south-eastern Australia. Full results of the surveys undertaken using this 

technique will be presented elsewhere (Sanecki et al., unpublished data). Here, 

we present a summary to illustrate the effectiveness of the technique followed by 

comments regarding the practicality and durability of the snow tubes and an 

assessment of the effectiveness of the hair tubes as a sampling device to detect 

the target species. 

The 216 snow tubes were established on 72 sites, each consisting of 3 snow tubes 

approximately 10 m apart. Sites were stratified across 3 elevation levels, 2 
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aspects, and 4 habitat types. We replicated this combination 3 times. Small 

mammal surveys were conducted on 13 separate occasions commencing just 

prior to the onset of snow, then continuing throughout the nival period and 

ending with a final survey when all sites were clear of snow. Hair tubes were set 

and left for 7 days. Upon retrieval, the tape was removed and inspected for hair 

samples (Figure 5.5). Species were identified using previously collected hair 

reference samples and using the methods outlined by (Brunner & Coman 1974; 

Brunner & Triggs 2002). 

Figure 5.5 Double-sided tape after retrieval from hair tube, showing an average hair sample 
from A. swainsonii. Sample quality was highly variable, however and in some instances 

only a few hairs were captured. 

Of 2,808 hair tubes set, 1,084 (39%) were visited by animals, indicated by the 

absence of bait within the hair tube upon retrieval. These provided 1, 105 small 

mammal detections. Of these, 683 (62%) were R. fuscipes, 420 (38%) were 

Antechinus spp. and there was 1 detection (0.09%) each of M. fuscus and B. 

parvus. The similarities of hair morphology of the two Antechinus species meant 

it was only possible to identify hair to genus level in some instances. Of the 420 

detections of Antechinus spp., 373 (89%) were identified as A. swainsonii and 4 
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(1%) were agile antechinus A. agilis, leaving 43 (10%) samples that could only 

be identified to genus level. Given that A. agilis is less frequently encountered 

than A. swainsonii above 1,500 m in heath and woodland (Dickman et al. 1983; 

Green 1988) it is probable that most of these were A. swainsonii. 

The detection rate of the hair tubes was very high with only 2 (0.2%) of the hair 

tubes that were apparently visited not collecting hair. In almost all cases, 

however, hair tubes detected only one species of small mammal at a time. Of the 

1,084 tubes visited, only 23 (2%) contained hair samples from more than one 

species. Multiple detections could be increased by inhibiting the removal of bait. 

However, as noted above, attempts to do this created additional problems. 

During the study we found that the double-sided tape remained sticky throughout 

the 7-day sample period. Problems arose only toward the end of winter when a 

number of tubes were submerged by melt water causing tapes to lose their 

stickiness. Subnivean temperatures are relatively mild in Australia with average 

temperatures of 0. 7°C under complete snow cover. Consideration would need. to 

be given to the best material for hair capture depending on the conditions likely 

to be encountered in other regions. Even at high northern latitudes however, 

once the hiemal threshold is reached, for the most part, subnivean temperatures 

. are still within a few degrees of freezing (Pruitt 1957), thus it is likely that 

double-sided tape may be still suitable in higher alpine and boreal areas. As our 

study progressed a number of sites became clear of snow at lower elevations 

exposing hair tubes to more varied temperatures including minima as low as -13 

°C. There was no indication that these "exposed" tubes were any less efficient at 

capturing hair samples. 

The use of hair tubes permitted us to undertake a systematic study of small 

mammal distribution at a scale previously impossible using other techniques. It 

was possible for two people to service all 216 snow tubes spread over 20 km 

easily over a 2-day period using a combination of 4WD, snowmobile and ski 

travel. During this time, it was possible to collect and replace hair tubes while 

undertaking additional weekly measurements at each site. We needed to 

excavate snow tubes on only one occasion after a large snowfall. Once extension 

tubes were fitted to these sites, no additional excavation was required. 
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Although it would be best to apply this technique once a suitable guide to 

identification or a reference collection is available, the technique could also be 

used to undertake preliminary investigations· over a ·large area and thereby 

identify areas that might be suitable for more intensive trapping studies. 

In conclusion, we believe the new technique described within this paper is a 

valuable addition to researchers working with small mammals in snow covered 

ecosystems. Although hair tubes are not a replacement for live-trapping 

methods, particularly in detailed small-scale studies, the limitations of the hair 

tube technique are balanced by the potential for its application at landscape

scales and its ability to return useful data for reasonable cost and effort. 
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6.1 Abstract 
We present the results of a study that is the first to investigate the distribution of 

small mammals in direct relation to the spatial and temporal variation of snow 

cover at the landscape-scale. We investigated the distribution of the small 

mammal species, the dusky antechinus, Antechinus swainsonii and bush rat, 

Rattus fuscipes in relation to snow cover in the subalpine zone of Kosciuszko 

National Park in the Snowy Mountains of south-eastern Australia. 

A new hair tube technique was used to detect the presence of small mammals 

active in the subnivean space. In 2002, we sampled 72 sites stratified by 

elevation (1501-1600 m, 1601-1700 m, 1701-1800 m), aspect (accumulating, 

ablating) and habitat type (woodland, wet heath, dry heath, grassland). These 

factors were considered important in influencing snow accumulation and 

generally reflected the types of habitats available to small mammals. In 2003, 

the presence of small mammals was investigated at 24 high elevation sites 

including six boulderfields. 

The development of the subnivean space in the Snowy Mountains is dependent 

on the presence of structures such as shrubs, boulders and microtopographic 

features that are capable of supporting a snow layer above ground level. 

When snow was present, small mammal detections were negatively correlated 

with snow depth and duration, and positively correlated with the complexity of 

structures and microtopography. At high elevations, detections were largely 

confined to boulderfields and at mid and low elevations small mammals were 

detected primarily in habitats where the subnivean space was most extensive. 

Antechinus swainsonii and R. fuscipes responded differently to snow cover with 

the latter seeming better able to overwinter where snow cover was shallow and 

patchy, in contrast to A. swainsonii whose occurrence was correlated to the size 

of the subnivean space. 

Keywords: snow, subnivean space, Rattus fuscipes, Antechinus swainsonii, 

Kosciuszko National Park, habitat, vegetation structure, distribution 
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6.2 Introduction 
Snow is a significant factor in the ecology of many organisms (Formozov 1946; 

Pruitt 1960, 1970, 1984; Halfpenny & Ozanne 1989; Stenseth et al. 2004). 

Despite this, few studies have directly investigated the influence of snow cover 

on the distribution of, and habitat selection by, small mammals that remain active 

during the winter. This is probably due, in part, to the inherent difficulties of 

research work in snow covered environments and the particular problems faced 

by workers attempting to sample organisms in the subnivean space, that is, the 

space between the snowpack and the ground surface. 

The decline in extent and duration of snow cover, both overseas (Houghton et al. 

2001) and in Australia (Galloway 1988; Whetton et al. 1996; Osborne et al. 

1998; Whetton 1998), as a consequence of climate change, is a matter of 

concern. Moreover, potential environmental impacts arising from the decline in 

snow cover (Green & Pickering 2002) and human activities in nival areas 

(Schmid 1971; Baiderin 1980; Price 1985; Ingold et al. 1993; Tsuyuzaki 1994) 

are likely to increase. Activities such as artificial snow making and precipitation 

enhancement (Bigg 1995; Ryan & King 1997) are already being used in 

Australia to reduce the negative effects of the decline in snow cover. Before 

consideration can be given to potential impacts of recreational and other human 

activities on subnivean fauna, such as small mammals, we first need a better 

understanding of how natural snow cover influences the distribution of snow

dwelling species. 

Australian small mammals known to remain active beneath the snow through 

winter include the murid rodents, bush rat Rattus fuscipes, and broad-toothed rat 

Mastacomys fascus, and the dasyurid marsupials, dusky antechinus Antechinus 

swainsonii, and agile antechinus A. agilis. None of these species is confined to 

nival areas and all have been the subjects of many studies in snow-free portions 

of their ranges {Calaby & Wimbush 1964; Wood 1971; Barnett et al. 1977; 

Barnett et al. 1978; Braithwaite 1978; Hall 1980; Hall & Lee 1982; Wallis et al. 

1982; Woodside 1983; Wallis 1992; Catling & Burt 1994; Lindenmayer et al. 

1994; Banks 1999; Lindenmayer et al. 1999). A few workers have investigated 

these species in areas subject to seasonal snow cover (Osborne et al. 1979; 

Dickman et al. 1983; Carron 1985; Green 1988; Green & Crowley 1989; Carron 
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et al. 1990; Bubela et al. 1991; Bubela & Rappold 1993; Sanecki 1999; Green 

2000, 2002). Few investigations, however, have considered how snow may 

influence these species during the nival period, and previous studies have been 

largely descriptive. For example, Osborne et al. (1979) completed a general 

survey of fauna above 1500 m including small mammals active beneath the snow 

and Green (2000) investigated over-snow movements by these species. The role 

of snow in the population dynamics and habitat selection of small mammals was 

studied by Carron (1985) using subnivean trapping methods (Mansergh 1985), 

while the winter home range and activity patterns of M fuscus were described by 

Bubela et al. (1991). For these species, the development and presence of the 

subnivean space has been thought essential to their ability to overwinter in snow

covered environments (Rappold 1989; Green & Osborne 1994; Rappold 1998). 

However, there has been no direct investigation of the relationship between small 

mammals and the development of the subnivean space in Australia. 

Our current understanding of subnivean ecology is, for the most part, based on 

overseas research, in regions where snow characteristics are very different from 

those occurring under Australian climatic conditions (Sanecki et al. In Review

a). For example, the presence of depth hoar is considered an important factor in 

permitting small mammal activity in the subnivean space, particularly in boreal 

regions (Pruitt 1984; Halfpenny & Ozanne 1989). The thermal properties of 

snow cover in Australia (and indeed in many parts of the world) are not 

conducive to the formation of depth hoar (Sanecki et al. In Review-a). 

Therefore, assumptions regarding its role in the ecology of small mammals in 

boreal regions are likely not to be valid in Australia. 

Since depth hoar does not facilitate the development of the subnivean space in 

Australia, it follows that the subnivean space must form by other mechanisms. 

As far as we are aware, there is no research to indicate the nature of the process 

by which the subnivean space forms in Australia. It is also possible that the 

subnivean space may not be as extensive as once thought (Green & Osborne 

1994). If this is the case, then a reduction in resources available to small 

mammals during the nival period may contribute significantly to winter mortality 

(Carron 1985). 
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In this paper we investigate the distribution of small mammals in the Australian 

subalpine zone in relation to factors affecting the depth and duration of snow 

cover. We also consider the factors that contribute to the formation of the 

subnivean space and its effect on small mammal distribution. The role of the 

thermal environment in the·distribution of small mammals will be considered in a 

separate paper (Sanecki et al. In Review-c). 

6.3 Methods 

6.3.1 Study area 

The Snowy Mountains are located in south-eastern Australia, and consist of a 

disjunct series of peaks and plateaux extending for about 350 km in a generally 

north-easterly direction from their southern extent at about 37°S 146°E to 35°S 

149°E. The Snowy Mountains contain the largest contiguous alpine and 

subalpine areas in Australia lying above 1500 m and subject to the accumulation 

of snow cover during winter (Costin 1989). Sampling sites were established in a 

series of valleys close to the Kosciuszko Road from Charlotte Pass (36°26'S, 

148°20 'E) to Rennix Gap (36°21 'S, 148°31 'E) in the Snowy Mountains (Figure 

6.1 ). The study was conducted over the winters of 2002 and 2003. 
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Figure 6.1 Map showing the study area. 

6.3.2 Sampling in winter 2002 

A 
N 
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Sampling sites were stratified using three factors (elevation, aspect and habitat 

type) that were considered important in influencing the distribution of snow. In 

addition, we gave consideration to the factors that might be important in the 

development of the subnivean space, or otherwise interact with the snow cover 

so as to influence small mammals during the nival period. 

In mountainous regions, elevation is generally considered to be the most 

important factor influencing snow cover (Mckay & Gray 1981 ). Sites were 

established at three elevation levels: low (1501-1600 m), mid (1601-1700 m) and 

high (1701-1800 m). 

Aspect is an important factor in determining both accumulation and ablation 

rates of snow cover (Mckay & Gray 1981 ). Within each elevation category, 

study sites were located on both generally ablating and generally accumulating 

aspects. The former consisted of sites that faced generally north to west and 

experienced higher levels of insolation, while the latter faced generally south to 

east and were often influenced by natural 'snow fence' effects (Figure 6.2). 
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The subalpine vegetation of the Snowy Mountains consists of a patchy mosaic of 

vegetation types (Read 1987) and there are strong relationships between 

vegetation types and topography in the alpine and subalpine areas (Costin 1954; 

Green & Osborne 1994; Costin et al. 2000). Four vegetation types that occurred 

at all· elevations were sampled to represent the range of habitat types available to 

small mammals: wet heath, dry heath, woodland and tussock grassland. 

In the Snowy Mountains, heathland is generally classified. according to its 

floristic composition (Costin 1954; Green & Osborne 1994; Costin et al. 2000), 

but small mammals are influenced by vegetation structure and complexity rather 

than by floristic composition (Carron 1985; Green 1988). Accordingly we 

identified two heath types, with wet heath generally having denser and more 
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complex vegetation than dry heath. Wet heath typically occurs along drainage 

lines and creeks or in poorly drained low-lying areas. Floristically, it is 

characterised by Baeckea spp., Leptospermum spp., Epacris spp. and Richea 

continentis and at lower elevations by Callistemon sieberii. Ground cover may 

comprise sphagnum moss in damp areas with grasses and forbs in more open 

positions and bare soil under dense shrub growth. Dry heath occurs in better

drained areas typically located on mid to upper slopes, and is characterised by 

species such as Bossiaea foliosa, Nematolepis ovatifolia, Prostanthera cuneata, 

Grevillea australis, Orites lancifolia, Hovea montana and Olearia spp. 

Trees have a significant effect on snow accumulation and ablation (Mckay & 

Gray 1981; Stottlemyer & Troendle 1999) and subalpine woodland is the most 

widespread vegetation above the winter snowline in the Snowy Mountains 

(Green & Osborne 1994). Subalpine woodland can be divided into climax and 

seral, in both cases dominated by the Snow Gum, Eucalyptus niphophila but also 

including Black Sallee, E. stellulata in poorly drained locations. Climax 

woodland is characterised by a grassy understorey almost devoid of shrubby 

plants. In contrast, seral woodland is one of the most structurally complex 

habitats in the mountains; its understorey is often of similar floristic and 

structural composition to nearby heathland (Costin 1954; Green & Osborne 

1994). In this study, we established sites in seral woodland because it occurred 

right through the altitudinal range and because of its structural complexity. 

Tussock grassland is primarily dominated by Poa spp. but often includes forbs, 

and in more poorly drained areas it may include rushes such as Empodisma 

minus. 

We replicated each combination of elevation class, aspect position and habitat 

type three times giving a total of 72 study sites. Small mammal surveys_ were 

undertaken using a new hair tube design; the technical details of this method are 

presented in Sanecki and Green (2005). The technique provides an efficient 

method of accessing the subnivean space, and the use of hair tubes eliminates the 

concerns for small mammal welfare associated with live-trapping. Each of the 

72 study sites consisted of three plots, approximately 10 m apart. Each plot was 

centred on a timber stake, to which a one-metre long 90 mm diameter PVC tube 
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was affixed with a 50 mm gap at the bottom to provide access to the subnivean 

space. 

Hair tubes were baited with a mixture of rolled oats, honey and peanut butter and 

left in place for seven days. ·The adhesive tapes were removed from hair tubes 

and hair samples were inspected under a compound microscope and identified 

using the methods outlined by Brunner and Coman (1974) and Brunner and 

Triggs (2002). 

A preliminary survey was undertaken to establish the distribution of small 

mammals in the absence of any effects of snow cover. This was undertaken in 

April 2002, after dispersal of juveniles had occurred and several weeks before 

the first snowfall. 

Eleven surveys were undertaken during the nival period commencing in June 

2002 when snow was present at all sites and continuing at intervals of 7-21 days 

until October. The survey commencing on 17 August 2002, when snow cover 

was greatest in depth and extent, was used as a comparison with the pre-nival 

and post-nival surveys. 

A final post-nival survey was conducted in October 2002 once all sites were 

clear of snow. When compared to the pre-nival survey results, this survey 

allowed the overall effect of the winter season on small mammal detections to be 

assessed. 

Snow measurements were taken weekly commencing at the first snowfall and 

concluding when all the sites were clear of snow the following spring. Snow 

depths were measured to the nearest 5 cm using graduations marked on the stake 

supporting each subnivean sampling tube. For each plot, a visual estimate was 

made of the percentage of ground exposed and the percentage of protruding 

shrubs and boulders within a 5 m radius of the stake (Table 6.1 ). 
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Table 6.1 Snow cover variables measured during winter 2002. 

Variable Description 

Snow depth Depth of snowpack above ground measured to nearest 5 cm 
marked on a timber stake located at centre of the plot. 

Exposed ground % Visual estimate of ground clear of snow within the plot. 

Protruding shrubs % Visual estimate of shrubs protruding through snowpack within the 
plot. 

Protruding boulders Visual estimate of boulders protruding through the snowpack within 
% the plot. 

To date, the only method that has been available to measure the size of the 

subnivean space has involved the excavation of a snow pit to the base of the 

snowpack. The subnivean space could then be inspected and measured. This 

method is very time consuming and a limited number of measurements can be 

~aken during any given period. The effort required to excavate a snow pit also 

increases with increasing snow depth and density. More importantly, the 

excavation of a snow pit causes considerable interference to the physical 

integrity of the subnivean space, especially when the pit is filled in again. Under 

continuous snow cover, the excavation of large snow pits can alter the thermal 

coupling between the subnivean and supranivean environments which can have a 

significant effect on subnivean thermal regimes (Taylor & Buskirk 1996). 

In Australia, snowpack density increases rapidly following deposition (Ruddell 

1998; Sanecki et al. In Review-a). Once the snowpack reaches a point where it 

does not contain low density layers, it is possible to extract snow cores with a 

Federal Snow sampler (Carpenter Machine Works, Seattle) without causing any 

compression to underlying snow layers. Subnivean space measurements were 

recorded on 1 7 August 2002, a date chosen to allow sufficient time for snowpack 

density to attain suitable values; maximum snow depth for the winter also was 

recorded on this date. Using a Federal Snow sampler, we took three snow core 

samples randomly within 5 metres of each plot where snow cover occurred. The 

sampler was carefully drilled until it broke through the base of the snowpack, and 

then lowered until it came to rest on the ground. The depth of the subnivean 

space was calculated as the difference between the snow depth measured by the 
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sampler and the length of the snow core extracted from the hole. For analysis, 

we averaged the three samples per plot. 

Recorded non-snow variables included those factors considered potentially 

important in small mammal distribution during the nival period; in particular, 

those that might facilitate the development of the subnivean space, or otherwise 

influence snow cover characteristics. These are described in Table 6.2. Five of 

the measured variables were obtained from five point-quadrats per plot using a 

20 mm diameter extendable pole marked at 20 cm intervals. The first point

quadrat was taken at the plot centre (the snow tube stake) and then four 

additional point-quadrats were taken at a distance of three metres uphill, 

dowrihill and to the left and right of the plot centre. ·For each point-quadrat, the 

ranging pole was lowered vertically through any vegetation being careful not to 

deform any branches or stems. For each 20 cm interval, the presence or absence 

of vegetation contacts were recorded, along with the species and maximum 

height. Tree canopy was assessed visually directly above the point quadrat. 

Microtopography was assessed within a one-metre radius of the base of the point 

quadrat position. Non-snow variables were surveyed during December 2002 and 

January 2003. 
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Table 6.2 Non-snow variables. Variables indicated# were based on five point-quadrats per 
plot (see text). Other variables were based on a circular sampling area of 5 m radius from 

the plot centre. 

Variable Description 

Shrub species# Number of contacts with point-quadrat ranging pole per species, total per plot. 

Shrub height# Maximum shrub height at point quadrats, average per plot. 

Shrub structure# Aggregate number of shrub contacts with point-quadrat ranging pole, total per 
plot. 

Tree canopy cover# Sum of scores from the five point quadrat positions. 0 = No canopy. 1 = 
Discontinuous canopy cover, a few living or dead branches. 2 = Thin 
continuous canopy cover with simple upper stratum. 3 = Thick continuous 
canopy cover with complex upper stratum and/or lower storey. 

Microtopography# Sum of scores from the five point quadrat positions. 0 = Flat. 1 = Small ground 
undulations and irregularities up to 1 Ocm in amplitude, small grass tussocks. 2 
= Uneven ground up to 30cm in amplitude, large grass tussocks. 3 = Very 
rough ground, such as drainage line with steep banks, undercuts and/or 
overhangs. 

Coarse Woody Debris Score, 0 =None, 1 =Scattered branches< 20cm diameter. 2 =Scattered 
(CWD) larger branches and fallen logs > 20cm diameter up to 50% of sampling area. 

3 = Branches and fallen logs >20cm diameter forming large intertwined piles or 
over more than 50% of the sampling area. 

Boulders Score, 0 = None. 1 = Small scattered boulders <25% of sampling area. 2 = 
Large scattered boulders covering up to 50% of the sampling area and/or 
providing no complex habitat structure. 3 = Large boulders covering over 50% 
of the sampling area and/or providing complex habitat structures such as 
overhanging edges, crevices and cavities. 4 = Boulderfield. 

Number of tree stems Number of tree stems, >1 Ocm diameter within the sampling area. 

Tree height Average height of trees in the sampling area in metres. 

Distance to nearest Distance in metres from centre of sampling area to nearest tree stem at ground 
tree stem level. 

Shrub cover % Visual estimate of shrub cover as a percentage of the sampling area. 

Grass cover % Visual estimate of grass cover as a percentage of the sampling area. 

Bare soil% Visual estimate of bare soil as a percentage of the sampling area. 

Leaf and bark litter % Visual estimate of leaf and bark litter as a percentage of the sampling area. 

Sphagnum% Visual estimate of sphagnum moss as a percentage of the sampling area. 

Rushes% Visual estimate of rushes Empodisma minus as a percentage of the sampling 
area. l 
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6.3.3 Sampling in winter 2003 

During January and February 2003, a wildfire burnt 69% of the area above 1500 

m in the Snowy Mountains (Green & Sanecki In Review), resulting in the 

destruction of 83% of the study sites used in 2002. Twelve of the original 24 

high elevation sites were burned. 

During winter 2003, we resampled the high elevation sites. We re-established 12 

new sites to provide three replicates of the four habitat types on both 

accumulating and ablating aspects. In addition, we established sampling sites in 

six boulderfields (3 ablating, 3 accumulating). Boulderfields in the Snowy 

Mountains are generally of glacial or periglacial origin and are characterised by 

the dominance of granitic boulders. The boulders may form a layer several 

metres thick (Mansergh & Broome 1994), providing deep crevices and 

overhangs. Podocarpus lawrencii is often the predominant species when shrubs 

occur, but species from other adjacent vegetation types are also often present. 

Six small mammal surveys were undertaken at all high elevation sites, 

comprising one survey in May before the onset of snow, four surveys during the 

nival period, and a final survey once all the sites were clear of snow. Snow and 

non-snow variables were recorded as described above for winter 2002. 

6.3.4 Statistical analysis 

6.3.4.1 Changes in small mammal distribution between seasons 

To examine whether there were differences in the distribution of R. fuscipes and 

A. swainsonii between the pre-nival, nival and post-nival periods in 2002, we 

used binomial generalised linear models (GLMs), with the presence or absence 

of each species as the response variable and the three stratification variables 

(habitat type, elevation class and aspect class) as fixed effects. 

6.3.4.2 Factors affecting nival period detections 

To determine factors affecting the probability of detecting each species during 

the nival period in 2002, we used binomial generalised linear mixed models 

(GLMMs). The response variable was the presence or absence of each species 

on each plot at each site on each survey date. The variables used as fixed effects 

are listed in Tables 6.1 and 6.2, and the random effect terms were site, plot and 

117 



survey date. We fitted two models for each species, the first including sites 

where snow cover was present and the second for sites where snow cover was 

absent. Continuous explanatory variables were fitted using regression splines 

where appropriate. Models were reduced using Waid tests. 

6.3.4.3 Subnivean space 

To determine whether there was an association between the size of the subnivean 

space and the stratification variables, GLMMs were fitted with the stratification 

variables as fixed effects and site as a random effect. To determine whether 

there was an association between the size of the subnivean space and the 

presence of each species, binomial GLMMs were fitted, with the size of the 

subnivean space as fixed effect and site as a random effect. The response 

variable was the presence or absence of R. fuscipes and A. swainsonii based on 

the survey conducted during the seven days following the measurement of the 

subnivean space size. 

6.3.4.4 Boulderfields 

To determine whether boulderfields at the high elevation level were used by R . . 

fuscipes and A. swainsonii in preference to other habitats, we used binomial 

GLMs with the presence or absence of each species as the response variable and 

habitat type (wet heath, dry heath, seral woodland and boulderfield) and aspect as 

fixed effects. We performed this analysis using 2003 data collected during the 

pre-nival, nival and post-nival periods. The four nival period surveys were 

combined into one dataset. 

6.4 Results 
Thirteen hair tube surveys were conducted between April and October 2002. A 

total of 2,808 hair tubes was set, of which 1,084 were visited by animals. This 

provided 1,105 small mammal detections, or a 39% detection rate. 

Only two species were detected in sufficient numbers to permit analysis: R. 

fuscipes (683 detections) and Antechinus spp. (420 detections). The similarities 

of hair morphology meant that it was not possible to differentiate between the 

two species of Antechinus in all instances. Of the 420 Antechinus detections, 3 73 

(89%) were A. swainsonii and 4 (1 %) were A. agilis, leaving 43 (10%) samples 
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that could be identified to genus only. Antechinus swainsonii is more common 

than A. agilis above 1500 m (Dickman et al. 1983; Green 1988); it is probable 

that the unidentified animals were A. swainsonii and they were included in 

analyses as A. swainsonii. There was only one detection (0.09%) each of the 

endangered M fuscus and mountain pygmy-possum Burramys parvus. 

During 2002, we measured snow for 22 weeks, giving a total of 4,752 measures; 

the results are summarised in Table 6.3. The duration of snow cover varied from 

one week at a low elevation ablating site to 21 weeks at a high elevation 

accumulating site. Snow duration was significantly different between elevations 

(P<0.0001). Within elevation classes, duration was significantly different 

between aspects (P<0.0001). A similar pattern also was apparent for maximum 

snow depths, which ranged from 20 cm at a low ablating site to 250 cm at a high 

accumulating site. Again, there were significant differences in maximum snow 

depths at different elevations (P<0.0001) and between different aspects within 

elevations (P<0.0001). Maximum snow depths on ablating aspects were 15-25% 

lower than on accumulating aspects. At low and mid-elevations, duration of 

snow cover was about 50% shorter on ablating aspects, but at high elevations 

only about 20% shorter. 

Snow cover at low elevation sites and mid-elevation ablating sites has shallow 

snow of short duration, characteristic of ephemeral snow in the classification 

system of Sturm et al. (1995). The deeper snow cover at the mid-elevation 

accumulating sites and the high elevation sites lasted for at least three months 

and is classified as maritime snow in the Sturm system. 
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Table 6~3 Average snow duration and maximum snow depths for 2002. 

Ablating Aspects Accumulating Aspects 

Duration Max Depth Duration Max Depth 

(Weeks) (+/-SD) (cm) (+/-SD) (Weeks) (+/-SD) (cm) (+/-SD) 

1701-1800 m 14.6 101.7 18.3 141.0 

(+/-2.8) (+/-42.4) (+/-1.8) (+/- 42.4) 

1601-1700 m 7.0 65.3 12.8 83.5 

(+/-2.5) (+/- 24.4) (+/-2.4) (+/-18.0) 

1501-1600 m 4.4 39.0 9.0 46.9 

(+/-1.7) (+/-11.3) (+/-1.6) (+/-12.8) 

6.4.1 Pre-nival, nival and post-nival surveys 2002 

During the pre-nival survey, there were 43 detections of R. fuscipes and 25 A. 

swainsonii. Neither elevation nor aspect was a significant factor in predicting the 

occurrence of either species. Habitat type was a significant factor for both 

species (R. fuscipes p=0.0026, A. swainsonii p<0.0001) with both species less 

likely to be detected in grassland and no significant difference between the other 

three habitat types. 

During the survey commencing on 17 August 2002, there were 20 detections of 

R. fuscipes and 49 of A swainsonii. Aspect was again not a significant factor for 

either species, but elevation was highly ,significant for both R. fascipes 

(p<0.0001) and A. swainsonii (p<0.0001), with both species less likely to be 

detected at high elevations. Habitat type was significant for R. fuscipes 

{p=0.0072) but was no longer significant for A. swainsonii (p=0.0699) indicating 

that this species was using grassland habitats during the nival period. 

There was an increase in the number of R. fuscipes detections during the post

nival survey with 104 detections. Antechinus swainsonii was detected 20 times. 

During the post-nival survey, habitat type was again a significant factor for both 

species (R. fuscipes p<0.0001, A. swainsonii p=0.0021). Elevation was not 

significant for R. fuscipes, but remained significant for A. swainsonii (p=0.0004) 

with this species less likely to be detected at high elevation sites. For R. fuscipes, 
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there was a significant interaction (p=0.0046) between elevation and aspect 

reflecting the fact that at the high elevation it was more likely to be detected on 

the ablating than the accumulating aspects. 

6.4.2 2002 nival period - effect of snow cover 

Detections for all nival period surveys are summarised for each species by 

elevation and habitat type in Table 6.4 and Table 6.5. In the presence of snow 

cover, both species were significantly less likely (p<0.0001) to be detected at 

higher elevations. This also was observed for A. swainsonii in the absence of 

snow (p<0.0001), but not R. fuscipes which had a similar detection rate in the 

absence of snow at all elevations. 

The highest detection rates for both species were in wet heaths, although the 

difference was not as pronounced for R. fuscipes (either with or without snow 

cover). For A. swainsonii, woodland and dry heath had similar detection rates. 

Grassland.habitats were all but unused by both species in the absence of snow, 

with no R. fuscipes and only one A. swainsonii detection. In the presence of 

snow cover, there were 30 A. swainsonii detections in grasslands, but only two R. 

fuscipes detections. 

Final nival period GLMMs are presented in Table 6.6 and Table 6.7. For the 

snow model, A. swainsonii was more likely to be detected at the mid and low 

elevation levels and at sites with high shrub structural complexity and 

microtopography. Antechinus swainsonii was more likely to be detected in mid

winter and at snow depths of less than 50 cm and above 100 cm (Figure 6.3 and 

Figure 6.4). 

In the non-snow model, A. swainsonii was more likely to be detected through the 

middle of the nival period and less likely towards the end (Figure 6.5). Aspect 

was important, with more animals detected on ablating aspects. 

R. fuscipes was more likely to be detected as shrub structural complexity 

increased, in both the presence and absence of snow. R. fuscipes was more likely 

to be detected in areas with shallow snow (Figure 6.6), and was le~s likely to be 

detected during the nival period whether snow was present or not, with 

detections increasing towards the latter part of the period, especially in areas that 

were free of snow cover (Figure 6. 7 and Figure 6.8). 
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Table 6.4 Small mammal detection success rates(%) by elevation during the nival period. 

Snow Non-snow 

A. swainsonii R. fuscipes A. swainsonii R. fuscipes 

1701-1800 m 3.4 9.2 1.5 45.0 

1601-1700 m 16.8 11.8 10.1 41.0 

1501-1600 m 36.7 17.8 24.8 42.7 

Table 6.5 Small mammal detection success rates(%) by habitat type during the nival 
period. 

Snow Non-snow 

A. swainsonii R. fuscipes A. swainsonii R. fuscipes 

Grassland 8.2 0.5 0.4 0 

Woodland 13.5 14.6 18.0 57.1 

Dry Heath 13.1 14.1 21.6 51.0 

Wet Heath 24.4 17.7 31.7 67.7 
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Table 6.6. Final nival period models for A. swainsonii~ (s) indicates that a regression spline 
was fitted to the term. p values are indicated for terms fitted to the model in the order 

shown. 

Factor F-Value OF p-Value 

Snow Model 

Elevation 15.60 2,69 <0.0001 

Shrub Structure 7.04 1, 139 0.0089 

Microtopography (s) 5.37 4, 139 0.0005 

Snow Depth ( s) 14.27 1, 1316 <0.0001 

Day (s) 8.66 4, 1316 <0.0001 

Non-Snow Model 

Habitat 4.22 3, 61 0.0089 

Aspect 5.45 1, 61 0.0229 

Day (s) 21.15 4,639 <0.0001 

Table 6. 7 • Final nival period models for R. fuscipes. (s) indicates that a regression spline 
was fitted to the term. p values are indicated for terms fitted to the model in the order 

shown. 

Factor F-Value OF p-Value 

Snow Model 

Shrub Structure 27.43 1, 143 <0.0001 

Snow Depth (s) 17.26 4, 1316 <0.0001 

Day (s) 47.67 4, 1316 <0.0001 

Non-Snow Model 

Shrub Structure 37.85 1, 126 <0.0001 

Day (s) 22.19 4,639 <0.0001 
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Figure 6.3 Probability of detecting A. swainsonii in relation to snow depth. Bars on x axis 
indicate small mammal detections. 
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Figure 6.4 Probability of detecting A. swainsonii in relation to day where snow cover was 
present. Bars on x axis indicate the time at which surveys were undertaken. 
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Figure 6.5 Probability of detecting A. swainsonii in relation to day in the absence of snow. 
Bars on x axis indicate the time at which surveys were undertaken. 
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Figure 6.6 Probability of detecting R. fuscipes in relation to snow depth. Bars on x axis 
indicate small mammal detections. 
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Figure 6. 7 Probability of detecting R. fuscipes in relation to day where snow cover was 
present. Bars on x axis indicate the time at which surveys were undertaken. 
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Figure 6.8 Probability of detecting R. fuscipes in relation to day in the absence of snow. Bars 
on x axis indicate the time at which surveys were undertaken. 
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6.4.3 Small mammals and the size of the subnivean space 

The presence of A. swainsonii was strongly related to the size of the subnivean 

space (Fi,93 18.81357, p<0.0001). In contrast, R. fuscipes showed no significant 

relationship (F I,93 2. 73287, p=0.1017) (Figure 6.9). 
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Figure 6.9 Fitted model showing the probability of detecting R. fuscipes and A. swainsonii 
in response to the size of the subnivean space. 

6.4.4 Factors influencing the size of the subnivean space 

0 

An initial model showed that the size of the subnivean space was significantly 

different between habitat types (F3,44=7.37, p=0.0004) and elevations (F2,44=9.06 

p=0.0005). The size of the subnivean space was not related to snow depth or 

aspect and there were no interactions between habitat and elevation. Final model 

predictions for an average site (Table 6.8) showed that the subnivean space at the 

low and mid-elevation sites was significantly larger than at the high elevation 

sites. There was no significant difference between the low and mid-elevations. 

At each elevation, grassland sites had the smallest subnivean space when 

compared to the other habitat types at the same elevation. At each elevation, wet 
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heath subnivean spaces were significantly larger than those of the other three 

habitat types (p=0.0103). 

Table 6.8 Model predictions for the size (cm) of the subnivean space by elevation and 
habitat type for an "average" site. 

Wet Heath Dry Heath Woodland Grassland 

1701-1800m 7.36 4.24 4.55 1.97 

1601-1700m 10.57 7.46 7.77 5.18 

1501-1600m 11.40 8.28 8.59 6.0 

When shrub structure and microtopography were added to the model before 

habitat type and elevation, structure and microtopography were each highly 

significant (F1,92=54.10, p<0.0001 and F1,92=30.59, p<0.0001 respectively), but 

habitat type was no ionger significant. This showed that variation attributed to 

habitat type was probably the result of differences in shrub structure and 

microtopography. Elevation was still significant (F2,44=4.64, p<0.0148). 

6.4.5 Winter 2003 

During the pre-nival survey, there were 44 detections of R. fuscipes and 23 of A. 

swainsonii. Neither aspect nor habitat type was significant with both species 

occurring in all habitat types other than grassland. 

There were 30 detections of R. fuscipes and 44 of A. swainsonii during the nival 

surveys. Small mammals were detected in all boulderfields throughout the nival 

period. Aspect was not a significant factor for either species, but habitat type 

was (p<0.0001), with both species more likely to be detected in boulderfields. 

No small mammals were detected in dry heath or woodland habitats, with wet 

heath the only other habitat in which they were detected (A. swainsonii, 10, R. 

fuscipes, 5). 

128 



During the post-nival survey, we detected 33 R. fuscipes and seven A. swainsonii. 

Detections of A. swainsonii were not significantly different between habitats or 

aspect, although the relatively few detections of this species do not provide a 

clear result. Both habitat (p=0.05) and aspect (p=0.004) remained significant 

factors in the final model for R. fuscipes except in the boulderfields where almost 

all detections were on ablating aspects. 

6.5 Discussion 
In nival areas, winter mortality of small mammals is attributed to the harsh 

climatic conditions typical of these areas (Pruitt 1957, 1984; Carron 1985; 

Halfpenny & Ozanne 1989; Rappold 1989). Snow is believed to ameliorate 

some of the negative climatic effects by providing a stable thermal environment 

(Pruitt 1957; Merritt & Merritt 1978; Pruitt 1984; Halfpenny & Ozanne 1989). 

Our study shows that this may not be the case in Australia. Both R. fuscipes and 

A. swainsonii were more likely to be detected at lower elevations where snow 

cover duration was shortest and where there was either no snow or where snow 

cover was patchy and often discontinuous. This suggests that, in Australia, snow 

cover has a negative effect on the abundance and survival of small mammals. 

Some of the observed changes in detectability in this study were probably the 

result of variation in the likelihood of animals visiting hair tubes. During the 

early part of the nival period the subnivean space was poorly developed, 

particularly where the first snowfall· penetrated through the vegetation cover to 

ground level. Sampling of small mammals at this time may not provide a true 

indication of their occurrence, because some tubes may be inaccessible until the 

subnivean space begins to form. The sudden decline in R. fuscipes detections at 

all elevations after the first snowfall (with a particularly marked decline at the 

highest elevation) was probably the result of animals failing to find hair tubes. 

In the post-nival survey, A. swainsonii detections were only slightly lower than 

those observed during the pre-nival survey, despite the fact that at this time 

almost all of the male population had died after breeding (Green 1988; Dickman 

1995). This suggested that the activity level of the surviving A. swainsonii 

increased after snow had melted. Similarly, the increase in R. fuscipes detections 

during the post-nival survey probably reflects increased activity resulting from 
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the onset of breeding which commences around the middle of October (Carron 

1985; Green & Osborne 1994). 

6.5.1 The subnivean space 

In boreal and colder alpine regions around the world, the development of the 

subnivean space is linked to the presence of depth hoar or pukak (Pruitt 1984; 

Halfpenny & Ozanne 1989), whereby a low-density snow layer forms at ground 

level and more dense layers higher in the snowpack provide structural support. 

The low-density depth hoar has been thought to permit small mammal movement 

and activity under the snow. The predominant snow types in Australia are 

maritime and ephemeral snow (Sanecki et al. In Review-a), neither of which is 

conducive to the formation of depth hoar (Sturm et al. 1995); rather, these snow 

types promote the development of higher density snow at ground level. 

Our results indicate that, under Australian snow conditions, the development of 

the subnivean space depends on the presence of structures able to support the 

snowpack above ground level (Green & Osborne 1994; Green 1998a). The 

important factors are the structural complexity of the shrub layer and 

microtopographic features. As a consequence, the development of the subnivean 

space is strongly associated with specific habitat types; in particular those with a 

well developed shrub layer and sites with sufficient microtopographic relief, such 

as drainage lines. Wet heaths often combine both of these characteristics and 

therefore could be considered prime nival habitats for small mammals. 

The structural factors significantly associated with small mammal detections 

were shrub structure (for A. swainsonii and R. fuscipes) and microtopography 

(for A. swainsonii). These factors most probably indirectly affect small 

mammals through their association with subnivean space formation. This 

interpretation is supported by the positive relationship between A. swainsonii and 

subnivean space size (Figure 6.9). The absence of a relationship between R. 

fuscipes and the size of the subnivean space is probably a reflection of the fact 

that Rfuscipes was rarely detected under the snow (Figure 6.6) and was recorded 

primarily at mid and low elevations where snow cover was shallow, 

discontinuous or absent during the nival period. It is possible that the larger R. 
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fuscipes was physically unable to access hair tubes at some high elevation sites 

where subnivean spaces were small (Table 6.8). 

Neither boulders nor coarse woody debris (CWD) was a significant factor in the 

subnivean space model, but in our 2002 surveys, few sites supported many such 

structures and many of these sites did not have any snow cover remaining when 

subnivean space measurements were taken in August. The 2003 surveys showed 

that large, complex agglomerations of boulders (boulderfields) were associated 

with high numbers of detections of small mammals, most likely as a result of the 

contribution that boulders make to providing structural support to the overlying 

snowpack. Where they occur, shrubs such as Podocarpus lawrencii provide 

additional structure because of their horizontal growth habit (Costin et al. 2000). 

Boulderfields are probably important refugia for small mammals during winter, 

at least at higher elevations, and are considered to be valuable habitats for small 

mammals (Green & Osborne 1994). It is likely that CWD also plays a role in 

subnivean space formation in Australia, as researchers elsewhere have found that 

CWD is important in structuring the subnivean space, and also providing 

connectivity between the subnivean and supranivean environments (Sherburne & 

Bissonette 1994). 

The increase in detections of R. fuscipes at high elevations subsequent to the 

disappearance of snow indicates that this species was resident throughout the 

winter, most probably in boulderfields (or other structurally complex habitats) 

that were not sampled during 2002. This is supported by the fact that small 

mammals took several weeks to be detected in otherwise suitable habitats 

immediately after the disappearance of snow. In the post-nival survey, R. 

fuscipes were more likely to be detected on ablating aspects, which had been 

clear of snow for about four weeks, than on accumulating aspects where snow 

had disappeared about one week before the survey. 

The smaller subnivean space size at higher elevation corresponds to the findings 

of Green (1988) and Green and Osborne (1994), who noted that the weight of a 

deep snow cover compresses the subnivean space. The fact that snow depth was 

not a significant factor in our model for the development of the subnivean space 

suggests that, even under deep snow, the subnivean space will still form, 

provided there is sufficient structural support. We do not discard the notion that 
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deep snow may reduce the size of the subnivean space, but consider that other 

factors also play a part. In particular, with increasing elevation the height and 

density of the shrub layer decreases and at high elevations may not be 

sufficiently robust to support the deeper snowpack. This point will be considered 

in more detail in a separate paper. 

The presence of trees provides connectivity between the supranivean and 

subnivean environments (Green 2000). This can benefit small mammals 

because, with increased access to the subnivean space, risks of predation are 

smaller when they move across the snow surface (Green 1998b, 2000). Trees 

also facilitate the removal of carbon dioxide from the subnivean space (Penny & 

Pruitt 1984). Conversely, increased connectivity between the supranivean and 

subnivean environments can have detrimental effects because it allows the 

ingress of cold air into the subnivean space, thereby reducing temperatures and 

increasing temperature fluctuations in an otherwise stable environment (Taylor & 

Buskirk 1996). There was no indication in our study, however, that the presence 

of trees was an important factor in the subnivean distribution of small mammals. 

6.5.2 Winter ecology of R. fuscipes and·A. swainsonii 

The results of this study indicate that A. swainsonii and R. fuscipes have different 

strategies for optimising survival during the winter. Compared to the pre-nival 

survey, the detection rate of A. swainsonii doubled in the nival period while 

detections of R. fuscipes halved whether snow was present or not (Figure 6. 7 and 

Figure 6.8), suggesting that activity of the former increased while the latter 

became less active. When snow is absent A swainsonii is nocturnal and/or 

crepuscular (Carron 1985; Green & Crowley 1989; Green & Osborne 1994) 

while R. fuscipes is almost exclusively nocturnal (Hall 1980; Lunney 1995). 

Changes in small mammal activity patterns have been observed during the nival 

period (Kucera & Fuller 1978; Stebbins 1984; Carron 1985) and may account for 

the changes in detections observed in this study. 

The almost complete lack of R. fuscipes detections in areas with continuous snow 

cover indicates that this species does not utilise the subnivean space to the same 

extent as A. swainsonii. This may reflect the fact that A swainsonii is an 

insectivore (Dickman et al. 1983; Green & Crowley 1989; Dickman 1995) and 
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forages actively throughout the nival period (Green 1988), while R. fuscipes is an 

omnivore and responds to the lack of foraging space in winter by including a 

higher proportion of plant material in its diet (Carron et al. 1990). Diet switching 

to a more abundant food source may mean that R. fuscipes can meet its increased 

energy demands without increasing foraging activity or foraging' area. 

The inclusion of shrub structure in the non-snow model for R. fuscipes indicated 

that structurally complex habitats were important whether or not snow was 

pres.ent, and that snow did not appear to modify its habitat utilisation patterns. 

By contrast, shrub structure was not important to A. swainsonii when snow was 

absent, suggesting that during winter this species foraged in shrub habitats 

irrespective of their structural complexity in order to maximise the opportunities 

for locating scarce food items. 

Our findings confirm the findings of Green and Crowley (1989) who observed 

that A. swainsonii used grassland habitats when snow cover was present and 

speculated that this was in response to a need to maximise foraging area and that 

they could do so because the snow provided cover. In contrast, the fact that R. 

fuscipes was not detected in any numbers in grassland seems to support our 

hypothesis that they do not need to forage broadly to fulfil their energetic needs. 

However, of all the habitats we examined, grasslands had the smallest subnivean 

space size at any given elevation. Rattus fuscipes has a body size almost double 

that of A. swainsonii and thus may not be able to exploit this habitat to the same 

extent. 

Overseas workers have reported that small mammals generally avoid areas of 

shallow snow cover (Pruitt 1960; Auerbach & Halfpenny 1991). This does not 

appear to be the case in Australia. Carron (1985) found that, during the nival 

period, R. fuscipes showed a preference for shallow snow, and our study 

confirms this observation. Carron (1985) also reported that A. swainsonii was 

unaffected by snow depth, while Green (1988) suggested that Antechinus spp. 

was negatively affected by both shallow and deep snow, the former being unable 

to provide adequate thermal insulation, while the latter acts to compress the 

subnivean space and reduce available foraging area. In our study, A. swainsonii 

detections were lowest at moderate snow depths of 50-100 cm (Figure 6.3). It 

appears that, under Australian snow conditions, shallow (and probably patchy) 
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snow benefits both species by increasing habitat availability. The positive 

relationship between deep snow and A. swainsonii detectability may reflect the 

outcome of interspecific competition with R. fuscipes. However, it may be a 

statistical artefact of the sampling regime where A. swainsonii was repeatedly 

detected at a handful of high elevation sites with deep snow cover. 

· Because the subnivean space is confined to areas of suitable structure, it is likely 

that the total extent of accessible habitat for small mammals is reduced during 

winter. Combined with harsh climatic conditions occurring in winter, a 

reduction of available habitat resources imposes stresses on resident animals 

leading to increased winter mortality (Spencer 1984; Carron 1985). In our study, 

it is not possible to draw conclusions about the adequacy of available resources, 

because the hair tube technique records the number of visitations without 

identifying the number of individuals. 

6.6 Conclusion 
To our knowledge this is the first study anywhere in the world to investigate the 

distribution of small mammals in nival environments in relation to the spatial and 

temporal variation of snow cover at the landscape...;scale. Previous studies that 

used live-trapping or indirect methods have been restricted by logistical 

constraints to small scales. As a result, the conclusions that can be drawn about 

broad-scale animal distributions have been limited. 

In Australia, which has predominantly maritime and ephemeral snow, small 

mammals are generally associated with shallow or patchy snow cover, most 

probably due to the limited extent of the subnivean space, which is dependent 

upon the presence of structural components such as shrubs, microtopographic 

relief and boulders. 

Patterns observed in our study do not correspond to the findings of workers in 

boreal or high elevation areas overseas, where climatic conditions are more 

conducive to the formation of depth hoar. However, they are probably relevant 

to areas with climatic regimes and snow conditions similar to those occurring in 

the Australian alpine and subalpine areas. With changes in snow cover regimes 

in response to global warming and climate change, it is possible that the 

dynamics of Australian nival systems may become more relevant to other areas. 
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7.1 Abstract 
During Winter 2002, we examined the effects of snow cover on the thermal 

characteristics of small mammal habitats in the Snowy Mountains, south-eastern 

Australia. The temperature in the subnivean space was virtually constant beneath 

the snowpack, ranging between 0 and + 1°C. When snow was patchy or absent, 

temperatures at ground level were highly variable with a minimum as low as -

13°C and maximum as high as +47.5°C. Two species of small mammals, 

Antechinus swainsonii and Rattus fuscipes, were detected more regularly at sites 

that were thermally variable; the snow cover at these sites was discontinuous, 

patchy and transient and was classified as ephemeral. At sites with deep and 

persistent snow cover (maritime snow), subnivean temperatures were stable, but 

small mammals were detected at low frequencies. At high elevations, 

boulderfields are favoured by small mammals during the nival period but were 

no different thermally from other habitats. These findings contradict the 

commonly held beliefs that small mammals prefer thermally stable winter 

environments, and that boulderfields experience low temperatures due to cold air 

drainage. In snow-free areas, diurnal temperature ranges varied with vegetation 

type, with the highest temperatures occurring in grasslands at most elevations. In 

mountainous regions, some areas are subject to a deep snow cover that persists 

for most of the winter, but in many areas poor and short-lived snow cover means 

that thermal instability may continue throughout the winter. One of the likely 

consequences of global warming is an increase in the extent of areas with 

thermally unstable winter conditions in mountainous regions throughout the 

world; it is possible that this change could actually benefit some small mammals 

at the expense of other species. 

Keywords: Subnivean space, Snowy Mountains, Kosciuszko National Park. 
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7.2 Introduction 
It is generally believed that the survival of small mammals over winter in nival 

areas is dependent on the relative thermal stability of the subnivean space 

(Formozov 1946; Pruitt 1984; Halfpenny & Ozanne 1989; Rappold 1998). This 

stability is achieved when snow cover is of sufficient thickness to decouple the 

supranivean and subnivean thermal environments. This creates conditions in the 

subnivean space that are quite distinct from the supranivean environment. The 

threshold snow depth for achieving thermal stability (hiemal threshold) 1s a 

function of snow thickness and density (Marchand 1982) but is of the order of 

15-50 cm of unbroken snow (Coulianos &Johnels 1962; Pruitt 1970; Halfpenny 

& Ozanne 1989; Courtin et al. 1991). Once the requisite snow depth has been 

deposited, the snowpack provides a thermal buffer, allowing subnivean 

temperatures to remain within one or two degrees of freezing throughout . the 

nival period regardless of fluctuations in air temperature above the snow. 

Small mammals are only able to exploit the thermal stability provided by snow 

cover if a subnivean space forms between the snow and the ground surface 

(Pruitt 1984; Halfpenny & Ozanne 1989). In boreal zones such as the taiga or in 

high alpine regions, the formation of the subnivean space and the activity of 

small mammals is thought to be facilitated by the presence of depth hoar (Pruitt 

1984). In the Australian Alps, however, snow conditions are not conducive to 

the formation of depth hoar (Sanecki et al. In Review-a). Rather, the formation 

of the subnivean space depends almost exclusively on the presence of structures 

that are physically capable of supporting the weight of the snowpack, in 

particular dense shrubs, boulders and . microtopographic features. Habitats 

combining these features, such as wet heaths, are occupied throughout the nival 

period by active small mammals such as the dusky antechinus Antechinus 

swainsonii and the bush rat Rattus fuscipes (Sanecki et al. In Review-b ). 

Boulderfields are considered prime habitats for small mammals in Australian 

high country areas (Green & Osborne 1994; Mansergh & Broome 1994), 

especially at higher elevations where other habitats become incapable of 

supporting a subnivean space. Indeed, this is the only habitat within which A. 

swainsonii and R. fuscipes are regularly detected throughout the nival perio9. at 

high elevation sites (Sanecki et al. In Review-b ). Boulderfields, however, are 
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believed to be susceptible to cold air drainage, especially in shallow snow 

conditions, which could reduce their thermal stability (Walter 1996; Green 

1998). This suggests that factors other than the thermal environment are 

important in determining small mammal distribution during the nival period. 

Small mammals are thought to experience particularly challenging climatic 

conditions during late autumn (pre-nival) and early spring (post-nival) 

(Formozov 1946; Fuller et al. 1969; Pruitt 1970; Merritt 1984; Courtin et al. 

1991). During these times, and in the absence ofa well-developed snow cover, 

small mammals are subject to temperatures often well below :freezing. fa 

autumn, snowfall may not persist whilst sleet and/or rain may "freeze out" 

animals (Formozov 1946; Halfpenny & Ozanne 1989). Similar conditions may 

occur during spring, and snowmelt can also result in localised flooding 

(Halfpenny & Ozanne 1989; Rappold 1998). 

fa areas where snow cover is of short duration and/or in years of shallow snow, 

the thermal conditions experienced by small mammals during much of the winter 

are likely to be similar to those occurring during pre-nival and post-nival periods 

where or when snow cover is more extensive. It would be expected, therefore, 

that more congenial thermal conditions should be present in snow covered areas 

than in areas free from snow, provided that a subnivean space is present to permit 

small mammals to remain active during the nival period. 

Human activities in nival areas, such as snow grooming and the use of over-snow 

vehicles, often result in compression of the snowpack, reducing the insulating 

qualities of snow (Schmid 1971; Keddy et al. 1979). The loss of insulation is 

thought to be detrimental to subnivean fauna (Halfpenny & Ozanne 1989; 

Auerbach & Halfpenny 1991 ). Therefore, increasing human exploitation of nival 

areas for winter sports could have significant consequences for resident small 

mammals. Global warming is also an issue of growing concern, with snow cover 

decline already apparent and expected to continue both overseas (Houghton et al. 

2001) and in Australia (Whetton et al. 1996; Whetton 1998). If this occurs, the 

small mammal fauna occupying large areas of the world's alpine regions could 

experience extended periods of thermal stress, with unknown effects on the long

term survival of these species. 
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In this paper we describe the thermal characteristics of small mammal habitats in 

the subalpine zone in relation to snow cover. We also investigate the role of 

snow as a thermal buffer and the importance of thermal stability to small 

mammals during the nival period in Australia. 

7.3 Methods 

7 .3.1 The study area 

The study area was located in the Snowy Mountains, south-eastern Australia 

(36°30'8, 148°15'E) and is described in detail elsewhere (Sanecki et al. In 

Review-b). The study area extended from Charlotte Pass (36°26'8, 148°20'E) to 

Rennix Gap (36°21'8, 148°3l'E) (Figure 7.1). This configuration was chosen 

because it included an appropriate range and combination of elevation, aspect 

and habitat types whilst also being reasonably accessible. 

New South Wales 

--- Study Area 

~-

Victoria 

Figure 7.1 Map of the study area. 
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7 .3.2 Winter 2002 

7.3.2.1 Study design 

The study design is described in detail elsewhere (Sanecki et al. In Review-b) 

and a brief summary is presented below. 

Sampling sites were stratified by elevation (1501-1600 m, 1601-1700 m and 

1701-1800 m), aspect (accumulating, ablating) and vegetation formation (wet 

heath, dry heath, seral woodland, grassland). Three replicate sites were 

established at each combination of elevation, aspect and vegetation, giving a total 

of 72 sites. Each site consisted of three plots each centred on a wooden stake 

that had a PVC pipe 1 m long and 90 mm in diameter attached and held 50 mm 

off· the ground. The pipe allowed access to the subnivean space without 

disturbance to the snowpack. 

7.3.2.2 Snow measurements 

Snow depth was measured weekly from the first snowfall (mid-May) to when the 

sites were clear of snow the following spring (mid-October). Snow depths were 

measured to the nearest 5 cm using graduations on each stake. At the same time, 

a visual estimate was made of the percent ground exposed and the percentage of 

protruding shrubs and boulders within a 5 m radius of each stake. 

7 .3.2.3 Small mammal surveys 

Small mammals were detected using a novel hair tube design (Sanecki & Green 

2005). Baited hair tubes containing adhesive tape were lowered to the bottom of 

the pipe and left in place for seven days before retrieval; any hairs adhering to 

the tape were identified under a compound microscope. 

A total of 11 hair tube surveys was undertaken at intervals of 7-21 days during 

the nival period commencing in July 2002. 

7.3.2.4 Temperature recording 

Subnivean thermal regimes were recorded using 24 Thermochron® iButton 

temperature loggers (Dallas Semiconductor Corp.). The iButton reads 

temperatures from -30°C to +70 with a resolution of 0.5°C and is accurate to 

±1°C. Eight loggers were set out at each elevation level so that one randomly 

selected replicate of each habitat type was sampled on both accumulating and 
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ablating aspects. Within each selected site, one plot was randomly chosen and a 

logger was placed inside a small open-ended·PVC tube and attached to the base 

of the stake with a 1 m length of wire. The loggers were set to record at 2 hourly 

intervals. They were set out one week before the first winter snowfall, and 

retrieved once all sites were clear of snow. 

7.3.3 Winter 2003 

During January and February 2003, a wildfire burnt 12 of the original 24 high 

elevation sites. We re-established 12 new sites to provide three replicates of the 

four vegetation types on each aspect. In addition, we established sampling sites 

in six.boulderfields (three ablating, three accumulating). 

Six hairtube surveys of the high elevation sites were undertaken, comprising one 

pre-nival survey in early May, four surveys during the nival period and a post

nival survey in late October. Snow depths were recorded as described above for 

winter 2002. 

Temperature loggers were located as described above at a randomly chosen plot 

at each of the boulderfield sites and two of the three replicates of the other four 

habitat types on each aspect. 

7 .3.4 Statistical analysis 

7.3.4.1 Small mammals and thermal stability 

Generalised linear models (GLMs) were used to investigate the relationship 

between small mammals and thermal stability. The re~ponse variable was the 

number of detections of A. swainsonii and R. fuscipes by site whilst the predictor 

variable was the number of thermally stable days. A thermally stable day was · 

defined as one in which the 24 hour temperature range was less than or equal to 

1°C. Thermally stable days were summed between 12 May and 18 October 

2002. 

7.3.4.2 Degree days (DDs) 

The concept of degree days (DDs), or thermal units, has been used to describe 

the timing of developmental processes in agricultural crops (Cross & Zuber 

1972; Davidson ~ Campell 1983); investigate patterns of embryonic 

development in animals (Gillooly & Dodson 2000) and' assess the likelihood of 
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invertebrate pest outbreaks (Ives 1973; Pruess 1983; Zijp & Blommers 1997). 

Degree days are calculated as a sum of the difference between the daily average 

temperature and an appropriate base temperature, usually ranging from 7 to 12°C 

in temperate climates (McMaster & Wilhelm 1997). 

We used degree days as an index ·of the cumulative thermal environment to 

which small mammals were exposed. Since low as well as high temperatures 

have effects on the physiology of endothermic animals (Young 1957), we 

calculated degree days as the sum of daily average temperatures, in other words 

no base temperature was used. Degree days were compared by elevation and 

aspect using Analysis of Variance. Data were log-transformed to satisfy 

assumptions of normality and homogeneity of variance. 

7.3.4.3 Thermal conditions in boulderfields 

We used Analysis of Variance to test whether there were any significant 

differences between boulderfields and the other habitats in the number of 

thermally stable days and winter mean, maximum and minimum temperatures. 

Again, where appropriate, data were log-transformed to satisfy assumptions of 

normality and homogeneity of variance. 

7.4 Results 

7 .4.1 Winter 2002 

7.4.1.1 Snow duration and thermal stability 

The first snowfall was recorded on 18 May 2002, however, snow depth was no 

more than 5 cm at any site. One week later, snow at the high elevations and 

some mid-elevation sites was sufficiently deep to achieve the hiemal threshold. 

All sites were clear of snow by mid-October. 

General snow cover and thermal conditions are summarised in Table 7.1. Snow 

depth and duration were significantly different between elevations and between 

aspects within elevations (Sanecki et al. In Review-b ). 
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As might be expected, the number of thermally stable days was strongly 

correlated to the snow cover duration (R2=0.89, F1,22 169.21, p<0.0001). Where 

the two differed, the number of thermally stable days exceeded the snow cover 

duration; this discrepancy was the result of a combination of factors. First, snow 

cover was recorded weekly, while thermal stability was recorded daily. Second, 

the locations of temperature loggers did not coincide exactly with the points of 

snow measurement (but were generally within one metre). Third, on some days 

the daily temperature range did not exceed 1°C despite the absence of snow, 

possibly because temperature loggers were in contact with melt water during 

spring. 

Stable subnivean temperatures in the presence of sufficient snow cover were 

independent of elevation or aspect, and temperatures remained within l .0°C of 

freezing. 

There were two distinct thermal patterns. At the low elevation sites and mid

elevation ablating sites, thermal stability was relatively short-lived and appeared 

to be confined to the early part of the winter (June to early August). By contrast, 

the mid-elevation accumulating sites and high elevation sites displayed thermal 

stability lasting more than three months (June to early October). 

7.4.1.2 Small mammals and thermal stability 

The numbers of detections of both A. swainsonii (F 1,16 8.5844, P<0.01) and R. 

fuscipes (F1,16 21.665, P<0.0001) were negatively correlated with the number of 

days that were thermally stable (Figure 7.2 and Figure 7.3). 
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Figure 7.2 The relationship between the number of A. swainsonii detections and the 
number of thermally stable days. 
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Figure 7.3 The relationship between the number of R. fuscipes detections and the number of 
thermally stable days. 
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7 .4.1.3 Diel temperatures 

Mean diel temperatures for each elevation and aspect are shown in Figures 7.4, 

7.5, 7.6, 7.7, 7.8 and 7.9. At low elevations and mid-elevation ablating sites, the 

spikes in daytime average temperature were considerably higher and persisted 

longer than at mid-elevation accumulating and high elevation sites. Where a 

daytime spike occurred, temperatures in grassland habitats were higher than 

those in other habitats, except for the low elevation ablating sites; here the 

grassland comprised large, dense tussocks and the data logger was in deep shade 

throughout the day, while it is likely that the data logger in woodland received 

direct sun in the late morning as a result of a gap in the tree canopy. 
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Figure 7 .5 Average hourly temperatures for ablating high elevation sites 
<•=Grassland, •=Dry Heath,+= Wet Heath, •=Woodland) 

156 

-
20 2 

20 212 



u 
I! 

14 

12 

10 

8 

! 6 

! 
4 

2 

0 

-2 

14 

12 

10 

8 
u 
I! 
" ! 6 :. 
E 
~ 

4 

2 

0 

-2 

1601-1700 Accumulating 

~ -
~ 

~ -----~-- - -- -
- -
2 4 6 8 10 12 14 16 18 

Time of Day 
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Figure 7.7 Average hourly temperatures for ablating mid-elevation sites 
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Figure 7 .8 Average hourly temperatures for accumulating low elevation sites 
(.A.=Grassland, •=Dry Heath,+= Wet Heath, •=Woodland) 
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7 .4.1.4 Degree Days 

Figure 7 .10 shows cumulative degree days for each elevation and aspect. DDs 

were significantly different among elevations (F2,1s 7.36, p<0.0046) and aspects 

(F1,18 12.01, p<0.0028), with no significant interaction. 
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Figure 7.10 Degree days by elevation and aspect. 

The low and mid-elevation sites displayed identical patterns; in each case the 

ablating aspect had significantly higher cumulative DDs than the accumulating 

aspect. At the high elevation sites, accumulating and ablating aspects had similar 

DD values. There was no significant difference among accumulating sites 

regardless of elevation {Table 7 .2). 
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Table 7.2 Results of pairwise comparisons of DD values among sites (p values). 

Low Mid 
Low Ablating Accumulating Mid Ablating Accumulating High Ablating 

Low Accumulating 0.0065 

Mid Ablating NS 0.0299 

Mid Accumulating 0.0109 NS 0.0484 

High Ablating 0.0021 NS 0.0100 NS 

High Accumulating 0.0003 NS 0.0017 NS NS 

7.4.2 Winter 2003 

Table 7.3 summarises the thermal conditions at high elevation sites in 2003. 

Thermal stability lasted significantly longer on accumulating slopes (Fi,16 5.37, 

p=0.0340), confirming the 2002 results. There was no significant difference in 

winter mean, minimum and maximum temperature between aspects or habitats 

with the exception of grassland which had a significantly higher maximum 

temperature (F4,10 3.99, p=0.0345). 

No significant difference was observed in the numbers of thermally stable days 

between boulder:fields and other habitats. 
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Table 7.3 Number of thermally stable days and ground level temperature values (±SD) for 
2003, by habitat type and aspect. 

Ablating Accumulating 

Grassland 

Days Thermally Stable (Days) 84.0 ::!: 0.0 127.0 :!:32.5 

Average (°C) -0.5 ::!: 0.1 1.2::1:0.7 

Maximum (0C) 34.5 ::!: 5.7 28.3±11.7 

Minimum (°C) -15.5 ::1:6.4 -17.0±14.1 

Dry Heath 

Days Thermally Stable (Days) 109.5 ::!: 2.12 148.0 ::!: 7.1 

Average (°C) 0.9±0.56 0.7±0.1 

Maximum (°C) 21.8 :!:6.72 14.3 :!:5.3 

Minimum (°C) -10.0 :!:4.24 -17.0:t:14.1 

Wet Heath 

Days Thermally Stable (Days) 107.5::!:1.0 147.0 ::1:0.0 

Average (0C) 1.54 ::!: 0.3 1.3±0.0 

Maximum (0C) 16.8 ::!: 6.0 11.5 ::!: 0.0 

Minimum (°C) -7.3:t:6.7 -6.5 ::1:0.0 

Woodland 

Days Thermally Stable (Days) 127.5::!:13.4 137.0 ± 0.0 

Average (°C) 0.1±1.74 1.0::1:0.0 

Maximum (0C) 20.8::!:14.5 21.0±0.0 

Minimum (°C) -10.8 ::!: 9.6 -2.0 ::1:0.0 

Boulderfield 

Days Thermally Stable (Days) 114.7::!:16.4 123.7::!:18.2 

Average (°C) 0.6::!:1.7 1.5 ::!: 0.4 

Maximum (°C) 13.5 :!:9.1 9.0 ::!: 0.5 

Minimum (-°C) -8.3:t: 9.3 -2.7 :!:0.8 
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7.5 Discussion 
If thermal stability was an important factor in the winter ecology of small 

mammals in the Snowy Mountains of south-eastern Australia, then detections 

should have been more frequent at sites with longer snow cover durations and 

hence, longer periods of thermal stability. At many sites that experienced a short 

nival period, the small mammal residents were subject to conditions throughout 

the winter that were similar to those occurring in the pre-nival and post-nival 

periods in areas with persistent snow cover (in other words, variable thermal 

regimes and temperature extremes). Contrary to expectations, small mammals 

were more likely to be detected in these less thermally stable areas (Figure 7.2 

and Figure 7.3). Furthermore, despite significant differences in DDs between 

ablating and accumulating aspects at low and mid-elevations (Figure 7 .10), 

differences in small mammal detections were not related to aspect (Sanecki et al. 

In Review-b ). These findings suggest that neither temperature variability nor 

overall thermal environment during winter affects small mammal detectability. 

While snow-free sites had more variable temperatures, conditions at these sites 

were substantially warmer than snow covered sites for a portion of the diel cycle, 

especially at low and mid-elevations (Figure 7.6 to 7.9). It is possible that small 

mammals are active during more favourable temperatures, a behaviour that has 

been exhibited by the sympatric broad-toothed rat Mastacomys fuscus (Bubela et 

al. 1991 ), A. swainsonii (Green & Crowley 1989) and perhaps also by R. fuscipes 

(Rappold 1998). By contrast, small mammals at snow covered sites experienced 

a thermally stable environment, but the continuous temperature of 0-1 °C would 

be well below their lower critical temperature and would have required a 

substantial metabolic energy expenditure for thermoregulation (McDevitt & 

Speakman 1994). 

Exposure to temperatures well below freezing is believed to be responsible for 

the inability of small mammals to survive supranivean conditions in boreal 

regions (Pruitt 1984). However, in our study, temperatures as low as -13 °C were 

recorded at snow-free sites (lower than those noted by Green (1988) at higher 

elevations), but did not appear to adversely affect small mammal detections. The 

ability of A. swainsonii to absorb solar radiation by basking (Green & Crowley 

1989), even when air temperatures are low, may enable them to maintain an 
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appropriate core body temperature (W alsberg et al. 1997). Both species also 

utilise burrows or nests during the winter (Green & Osborne 1994) and may 

thereby have avoided subzero temperatures. 

Contrary to conventional wisdom, the occurrence of active small mammals in the 

Snowy Mountains does not appear to be dependent on a thermally stable 

environment. It is also apparent that thermal stability does not explain the 

relationship between small mammal detections and the subnivean space (Sanecki 

et al. In Review-b). Karlsson (1986) suggested that several factors, including 

social interactions, patchy and restricted food resources, and subnivean 

microclimate, interact to regulate small mammal populations during the nival 

period. However, our results show that subnivean temperatures have no 

significant effect on small mammal detections, and there is evidence that food 

resources during winter are not limiting in the Australian Alps (Green 1982, 

1989; Carron et al. 1990; Rappold 1998; Green 2001). Our contention is that the 

physical presence of a subnivean space is the overriding factor, particularly for 

species that forage widely during winter. 

At high elevation sites, small mammals were more likely to be detected in 

boulderfields than in any other habitat (Sanecki et al. In Review-b ). 

Boulderfields are the preferred habitat for small mammals m nival areas 

(Bolshakov 1984; Green & Osborne 1994; Mansergh & Broome 1994) despite 

the fact that they did not provide any thermal benefit over habitats such as wet 

heaths that are heavily utilised at lower elevations. The low DD values recorded 

at the high elevation sites are consistent with the general observation that the 

duration of the growing season in alpine areas, and hence primary productivity, 

decreases with elevation (Komer 1999). It follows that at high elevations, the 

shrub layer is shorter and less dense than comparable habitats at lower 

elevations, and may be unable physically to support the snowpack (Green & 

Osborne 1994; Sanecki et al. In Review-b ). At high elevations, boulderfields are 

the major habitat capable of sustaining a subnivean space large enough to allow 

small mammal movement. 

The difference in thermal pattern between low elevation and mid-elevation 

ablating sites on one hand, and mid-elevation accumulating and high elevation 

sites on the other (Table 7.1), is consistent with our research (Sanecki et al. In 
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Review-a) indicating that snow cover in the Australian Alps falls into two of the 

categories described by Sturm et al. (1995). Snow cover at sites with transient 

snow cover and variable temperatures is classed as ephemeral, while snow 

characteristics at sites with persistent snow and stable temperatures most closely 

'conform to the maritime snow cover class. The detectability of A. swainsonii 

and R. fuscipes is greater in areas with ephemeral snow. 

7 .5.1 Implications for management 

As global temperatures increase in future years, the extent and duration of snow 

cover in the Australian Alps is forecast to decline (Whetton et al. 1996; Whetton 

1998), resulting in increasing areas either completely free of snow throughout 

winter or subject to ephemeral snow cover conditions. Based on our findings, A. 

swainsonii and R. fuscipes are likely to benefit from this change at the possible 

expense of other species, such as the mountain pygmy-possum, Burramys parvus 

(Broome 2001), that are thought to be dependent on more stable thermal 

conditions under continuous snow cover. Another negatively affected species 

may be M fuscus which is the preferred winter food of the introduced red fox 

Vulpes vulpes and gains protection from continuous and deep snow (Green 

2002). 

In light of the fact that the integrity of the subnivean space is more important 

than thermal stability for the overwinter survival of small mammals, the 

potentially detrimental effects of snow compression on subnivean thermal 

regimes (Schmid 1971; Keddy et al. 1979) may not be as significant as 

previously thought, particularly for species such as R. fuscipes and A. swainsonii, 

and particularly in areas with maritime or ephemeral snow. However, changes to 

thermal environments may have secondary implications for small mammals. For 

example, lower temperatures under compacted snow have the potential to affect 

plant growth which in turn has implications for the development of the subnivean 

space (Pickering & Hill 2003). 
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7.6 Conclusions 

Interpretations of the nival population dynamics of small mammals in Australia 

have been based on research in boreal regions where winter temperatures are 

· more extreme and thermal conditions in autumn and spring are critical to animal 

survival (Halfpenny & Ozanne 1989). In the Australian Alps, winter-active 

small mammals are associated with thermally unstable ephemeral snow 

conditions. Under these conditions, pre-nival and post-nival thermal regimes 

(which can last all winter in areas of ephemeral 'snow cover) may not be as 

stressful for small mammals as has been previously assumed. 
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8.1 Abstract 
Radio telemetry was used to investigate changes in home range sizes and activity 

patterns of Rattus fuscipes and Antechinus swainsonii in a subalpine heathland at 

Perisher Creek, in the Snowy Mountains, south-eastern New South Wales, in 

response to the accumulation of snow during the winter. 

We estimated home range area for each animal during the autumn and winter 

using two methods, minimum convex polygon and 95% and 50% utilisation 

contours using the kernel method. With both methods, the home ranges of R. 

fuscipes and A. swainsonii were significantly smaller (P<0.001) during the winter 

when compared to autumn home range size. Both species were restricted to 

areas of dense wet heath close to the main drainage line. 

Rattus fuscipes showed signs of social interaction during both seasons in contrast 

to A. swainsonii, which appeared to remain solitary. In winter, R.fuscipes nested 

communally at a single location, while during autumn it appeared to use a 

number of nest sites. 

There was no significant change in daily activity patterns between autumn and 

winter in either species. R. fuscipes remained primarily nocturnal during both 

pre-nival and nival periods while A. swainsonii continued to be active throughout 

the diel cycle, although there was a slight shift in its peak activity time. 

Keywords: Radio tracking, subnivean space, communal nesting, winter diet, 

Australian Alps. 
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8.2 Introduction 
Although it is widely acknowledged that snow is an important ecological factor 

for organisms that live in nival areas (Formozov 1946; Pruitt 1960; Halfpenny & 

Ozanne 1989; Green & Osborne 1994), there is a paucity of research on the 

effect of natural snow on the ecology of small mammals in the subnivean space. 

One aspect that has received relatively little attention, particularly in Australia, is 

the effect of snow cover on the home range and activity patterns of small 

mammals. 

Home range was originally defined as 'the area traversed by the individual in its 

normal activities of food gathering, mating and caring for young' (Burt 1943). 

The home ranges of small mammals have been studied extensively in Australia 

and elsewhere, for example, Banks et al. (1975); Wolton (1985); Bubela et al. 

(1991) and Morzillo et al. (2003). 

Radio tracking of individual animals is currently the method of choice for 

collecting data about animal locations and movements (Wilson et al. 1996). This 

is because trapping techniques are unlikely to provide a reliable estimate of home 

range area due to the disruption of normal behaviour following repeated trapping 

(Banks et al. 1975; Lance & Watson 1980; Bubela et al. 1991). The most widely 

used method for estimating home range area from radio tracking location data is 

the minimum convex polygon (MCP) (Mohr 1947). In addition, a range of 

parametric (Jennrich & Turner 1969) and nonparametric methods (Dixon & 

Chapman 1980) has been developed, including kernel methods (Worton 1989). 

All of the currently available estimators of home range area have some 

limitations (Wolton 1985). Despite this, home range estimation can provide 

useful information about behaviour and habitat utilisation patterns of individual 

animals and about interactions among conspecifics that is not revealed by other 

techniques (White & Garrott 1990). 

In Australia, three species of small mammal are active in the subnivean space of 

mainland mountains during winter: the dusky antechinus Antechinus swainsonii, 

a dasyurid marsupial, and two murid rodents, the bush-rat Rattus fuscipes and the 

broad-toothed rat Mastacomys fuscus (Green & Osborne 1994). Radio tracking 

of A. swainsonii (Green 1988) and M .fascus (Bubela et al. 1991) has been 
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undertaken, but home range estimates are available only for M. fuscus and only. 

during the non-nival period (Bubela et al. 1991). 

Rattus fuscipes is predominantly nocturnal in non-nival areas and during the non

nival period in the Snowy Mountains, but tends towards more diurnal activity 

during winter (Carron 1985). The situation with A. swainsonii is less clear, with 

Green and Osborne (1994) contending that the species is largely crepuscular or 

nocturnal during the non-nival periods but becomes more active during the day in 

winter. Conversely, Carron (1985) and Green and Crowley (1989) suggest that it 

is active throughout the diel cycle regardless of season. 

In a landscape-scale study of small mammal distribution in relation to variations 

in snow cover conditions, it was observed that once snow cover was established, 

small mammals were virtually excluded from habitats without shrub layers that 

permit the development and maintenance of a sufficiently large subnivean space · 

(Sanecki et al. In Review-b ). These findings suggest that the subnivean space 

may not be as extensive as previously thought by Green and Osborne (1994). If 

this is the case, then we would expect that the home ranges of small mammals 

would contract during the nival period. In this context, the objective of this study 

was to investigate how snow cover affects the home range areas and activity 

patterns of R. fuscipes and A. swainsonii. 

8.3 Materials and methods 

8.3.1 Study area 

The study area was located along Perisher Creek, 2.5 km north of Perisher Valley 

(36°24'S, 148°26'E.) in Kosciuszko National Park within the Snowy Mountains. 

The study site was located at an elevation of 1650 m. 

In January and February 2003, the Snowy Mountains experienced a major· 

bushfire that burned 69% of the area above 1500 m (Green & Sanecki In 

Review). Tlie study area is a remnant patch of subalpine vegetation that was not 

burnt, approximately 400 m by 150 m in size, and consists of a mosaic of 

vegetation communities typically found at this elevation (Sanecki et al. In 

Review-b ). Wet heath occurs along the creek and in other poorly drained 

locations, interspersed with areas of dry heath and tussock grassland where soils 
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are· better drained. Seral woodland, dry heath and tussock grassland occupy the 

adjacent slopes. 

8.3.2 Field methods · 

Four trapping lines were established running parallel to the creek, each with 

either 18 or 20 trap points. Two lines were located on each side of the creek. 

Trap lines were used in preference to a uniformly spaced grid because these 

allowed traps to be placed in optimal locations for capture, increasing trapping 

success (Read et al. 1988). This was particularly important as trapping success is 

greatly reduced once snow cover is established (Carron 1985; Sanecki 1999). 

Trapping points were marked with 1.8 m long numbered timber stakes. A 55 

litre plastic garbage bin was attached to each timber stake to permit trapping 

beneath the snow during winter (Carron 1985; Mansergh 1985;. Green 1988; 

Sanecki 1999). Each bin had a hole cut at ground level to permit access to the 

traps by small mammals, and positioned so that the base opening would provide 

the best access to the subnivean space once snow cover was established. 

Small mammals were trapped using Type A Elliot traps (Upwey, Vic), baited 

with a mixture of peanut butter, honey and oats. A handful of Dacron® wadding 

was added to each trap which was then placed in a plastic bag to provide 

additional insulation and protection from water. Traps were placed in the bins 

during both pre-nival and nival trapping periods. Traps were set for three nights 

and checked twice daily prior to winter and three times daily during the winter. 

Individual R. fuscipes were marked with numbered ear tags, while A. swainsonii · 

were marked by clipping toenails. 

8.3.3 Radio tracking 

For the purpose of this study, we defined two distinct periods during which 

tracking was undertaken. The pre-nival period was prior to the first winter 

snowfall, while the nival period commenced once a continuous snow cover was 

established across the study site. We refer to these periods as autumn and winter 

respectively from here on. 

Preliminary small mammal surveys were conducted during November 2002, 

February 2003 and April 2003 to monitor population numbers and identify the 

most suitable animals to be fitted with radio collars. 
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Small mammals were trapped for radio tracking in autumn immediately 

following the April 2003 survey. At this time, small mammals have completed 

breeding and juvenile dispersal has taken place (Carron 1985). 

Eleven adult animals (Table 8.1) were fitted with radio transmitters (Titley 

Electronics Ltd, Ballina, NSW). Radio collars were fitted around the neck, and 

each animal was then briefly held in an observation cage before release to ensure 

that the collars were not causing discomfort and also were unlikely to be slipped 

off. Tracking commenced after all animals were collared and released, and all 

traps were removed from the trapping grid so that animal movements were not 

biased by their presence. 

Location fixes were obtained over a seven day period, after which tracking was 

no longer considered useful, due to the rate of radio collar failure. Fixes were 

recorded at hourly intervals spread evenly over the diel cycle. Only those 

individuals for which a minimum of 40 fixes was recorded were included in 

subsequent analyses (Table 8.1 ). Intervals of one hour are thought to be 

sufficient to ensure independence of successive fixes (Swihart & Slade 1985). 

Location fixes were determined by triangulation from telemetry points using a 

Telonics TR-4 tracking receiver and a collapsible 3-element yagi antenna 

(Sirtrack Ltd, NZ). Telemetry points were established adjacent to the trapping 

grid to minimise interference with the animals, and were selected to provide the 

best geometry for each pair of location fixes. For each fix, a compass bearing 

was taken from one of the telemetry points, followed immediately by another 

taken from a point that was as close as possible to a 90° angle from the first 

bearing. 

At the end of the seven day period, animals were recaptured and remaining radio 

collars were removed. Only two collars were retrieved from A. swainsonii of 

which one was still functioning. Two had been shed by animals and were unable 

to be retrieved and one animal was not recaptured. None of the collars attached 

to R. fuscipes were functioning: one had been shed and all others were found to 

have been gnawed so that either the aerial had been removed or the transmitter 

housing had been damaged. In several cases, all electronics had been removed 

so that all that remained on the animal was the nylon collar and a small part of 

the resin transmitter housing. 
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Table 8.1 Numbers of radio-collared Rattus fuscipes and Antechinus swainsonii for which a 
minimum of 40 location fixes were obtained. Numbers in brackets indicate the number of 

animals with failed or slipped collars. 

Species Male 

R. fuscipes 2 

A. swainsonii 2 (1) 

Autumn 

Female 

3 (1) 

1 (1) 

Winter 

Male Female 

3 1 

1 3 

Winter radio tracking did not commence until the second week in September 

when there was a continuous snow cover 50-100 cm deep at the study site. Prior 

to this, snow cover at the site was patchy. Small mammals were trapped as 

described above and radio collars (Sirtrack Ltd, NZ) were attached to eight 

animals (Table 8.1 ). Despite gnawing damage on collars fitted to R. fuscipes, six 

of the eight collars were still functioning when retrieved. Animal location fixes 

were obtained as described above over a 5 day period. The only difference was 

that fixes were not only taken from telemetry points but, because the snow was 

capable of supporting a person on skis, fixes were also taken from trap point 

marker stakes. 

8.3.4 Data analysis 

The trapping points and radio telemetry points were surveyed using a Nikon™ 

D50 Total Station (a combination theodolite and laser distance survey station). 

These data were mapped and location fixes for each animal were plotted using 

AutoCAD® 2002 (Autodesk Inc.). The base map and location maps for each 

animal were then transferred to ArcView™ 3.2 (ESRI). Home range analysis 

was performed using the Animal Movement extension to ArcView™ (Hooge & 

Eichenlaub 1997). 

Home ranges were calculated usmg the mtmmum convex polygon (MCP) 

method (Mohr 1947) and the kernel method (Worton 1989). For the kernel 

method, we calculated the area contained within the 95% and 50% utilisation 

contours (UC). Home range areas were log transformed to satisfy assumptions 

of normality and homogeneity of variances and analysed using analysis of 

variance (ANOV A). Home range overlap was assessed visually. 
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Small mammal activity was determined from radio telemetry and follows Bubela 

et al. (1991) who considered than an animal was active if it had moved more than 

10 m between hourly fixes and its transmitter signal was fluctuating. Animals 

were considered to be inactive when the signal was steady. The percentages of 

observations representing active animals were plotted by hour and observations 

were divided into daytime (0600-1700h) and night-time (1800-0500h) based on 

the times of sunrise (autumn 0613, winter 0603) and sunset (autumn 1734, winter 

1740) during which radio tracking was undertaken. We compared activity 

patterns between seasons and time of day using ANOV A. 

8.4 Results 
Due to small sample sizes, it was not possible to compare home ranges of 

different sexes for each season. Therefore, we pooled autumn and winter data. 

No significant differences were found in home ranges or activity patterns 

between males and females of either species. Subsequent analyses were 

performed on pooled male and female data for each species. 

8.4.1 Home Ranges 

Home range estimates for individual animals are presented in Table 8.2. Home 

ranges were significantly smaller (P<0.001) in winter than autumn for both 

species (Table 8.3 and Figures 8.1, 8.2 and 8.3). Except for the 95% UC, there 

was no significant difference in home range area between the two species in 

either season. With 95% UC, the winter home range for R. fuscipes was 

significantly larger (P<0.01) than for A. swainsonii (Figure 8.1). Winter home 

range areas for both species were less variable than autumn home ranges. · 

Home ranges based on kernel 95% UC were larger than those based on MCP 

(Table 8.2). This was more marked in winter when 95% UC estimates were 

more than double MCP estimates for two of the four A. swainsonii and all R. 

fuscipes. 
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Table 8.2 Home range area estimates (m2) for individual Antechinus swainsonii and Rattus 
fuscipes in autumn and winter 2003, based on kernel 95% and 50% utilisation contours 

(UC) and minimum convex polygon (MCP). 

Season Species Sex Number 95%UC 50% MCP 
of Fixes UC 

A. swainsonii F 40 14967.5 2526.7 8208.1 

M 48 9205.6 866.6 5901.2 

M 44 12490.7 1601.9 8523.8 

c R. fuscipes F 41 9294.8 1511.1 7394.1 E 
:::I ... 
:::I F 40 12124.7 3350.8 7382.4 <( 

F 44 9697.9 1265.5 6506.8 

M 46 16513.1 1504.5 10825.5 

M 43 13771.6 2275.3 8446.2 

A. swainsonii F 40 2293.9 425.7 1970.0 

F 40 2951.1 691.9 1216.7 

F 41 3814.3 858.5 1820.9 

.. M 42 2578.3 357.7 2454.0 CD ... 
c 
i R. fuscipes F 40 6515.9 723.5 3069.3 

M 41 4559.4 665.6 2109.9 

M 40 6309.0 782.5 2896.9 

M 40 7069.0 803.7 3004.8 

Table 8.3 Results of ANOV As for autumn and winter home range areas of R. fuscipes and 
A. swainsonii based on kernel 95% and 50% utilisation curves (UC) and minimum convex 

polygon (MCP). 

95%UC 50%UC MCP 

F p F p F p 

Season 86.09 <0.001 25.24 <0.001 123.18 <0.001 

Species 10.73 <0.01 1.69 N.S. 4.7 N.S. 

Season x Species 10.66 <0.01 0.07 N.S. 2.38 N.S. 

180 



Since it is likely there were uncollared conspecifics in the same area, conclusions 

about home range overlap must be viewed conservatively. The home ranges of 

R. fuscipes in winter showed a greater level of overlap than in autumn, with all 

four individuals restricted in winter to a narrow strip of dense wet heath along the 

creek line. Autumn home ranges did not overlap to the same extent with animals 

moving over larger areas. However, there were several foci of activity for all 

animals in dense wet heath near the creek. 

In winter, R. fuscipes appeared to nest communally with all animals spending 

daytime periods of minimal activity within 10-20 m of a small patch of boulders. 

The possibility of communal nesting also was supported by the fact ·that 

recovered radio collars were found to have been gnawed by conspecifics. 

Considerable interaction among individuals also appeared to occur during 

autumn as evidenced by damage to radio collars, but periods of inactivity were 

not restricted to one location. Rather, each animal appeared to use a number of 

nest sites within its home range. However, the extent of the home range overlap 

meant it was possible that communal nesting was occurring and on several 

occasions collared females were located in close proximity to each other. 

There appeared to be less home range overlap among A. swainsonii than R. 

fuscipes in both seasons, especially in autumn when one A. swainsonii home 

range did not overlap at all with the home range of a conspecific. Home ranges 

of A. swainsonii did not show the same level of overlap as those of R. fuscipes 

during winter, however, their home ranges were again mainly associated with 

vegetation along the creek line. Periods of inactivity were not as obviously 

associated with specific locations during either season and the absence of 

gnawing damage to radio collars suggests that individuals spent little if any time 

in close proximity to conspecifics. 
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8.4.2 Activity Patterns 

Activity patterns for both A. swainsonii and R. fuscipes are shown in Figure 8.4. 

Rattus fuscipes was. significantly more active (P<O. 001) during the night than the 

day in both seasons (Table 8.4). In contrast, A. swainsonii did not display 

significantly greater activity levels between day and night, although there was an 

interaction (P<0.01) between activity pattern and season (Table 8.4). In autumn, 

the peak activity of A. swainsonii was before and just after dusk, while in winter, 

animals were most active in the early morning (Figure 8.4). 

Table 8.4 Results of ANOV As for the autumn and winter activity patterns of A. swainsonii 
and R. fuscipes. 

A. swainsonii R. fuscipes 

F p F p 

Season 0.1 N.S. 0.05 N.S. 

Time of Day 0.06 N.S. 62.65 <0.001 

Season x Time of Day 9.24 <0.01 2.22 N.8'. 
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Figure 8.4 Activity patterns for A. swainsonii and R.fuscipes during autumn and winter. Dotted vertical lines indicate the boundary between night and daytime 
observations. Proportion of location fixes between day and night were 53% and 47% respectively. 



8.5 Discussion 

8.5.1 Home range 

Small. mammals in nival environments depend on the development of a 

subnivean space between the ground surface and the overlyiri.g snowpack to 

enable access to resources necessary for survival (Formozov 1946; Pruitt 1984; 

Green & Osborne 1994). The climatic conditions in the Snowy Mountains are 

such that a thermal gradient through the snow, sufficient to facilitate the 

development of the subnivean space as a result of depth hoar formation, does not 

occur (Ruddell 1998; Sanecki et al. In· Review-a). The formation of the 

subnivean space, and hence small mammal activity, depends on the occurrence 

of structures of sufficient physical strength to support the weight of the overlying 

snow cover, such as dense shrubs, boulders and/or other micro-topographic 

features (Green & Osborne 1994; Sanecki et al. In Review-b ). In the Sno\Vy 

Mountains, small mammals are all but undetectable in nival habitats where such 

structures are absent (Sanecki et al. In Review-b). 

In this study, the home ranges of A. swainsonii and R. fuscipes were significantly 

smaller in winter than in autumn. These findings support our contention that the 

relatively dense snow cover of the Snowy Mountains does not permit the 

widespread development of the subnivean space. Rather its development, and 

thus the amount of winter habitat available to small mammals, is dependent on 

the presence of suitable habitat structure (Sanecki et al. In Review-b). In our 

study area, habitat used by both species during the nival period comprised wet 

heath where the shrubs were dense enough to enable subnivean space.formation. 

The creek line also was used, where the combination of flowing water and high 

micro-topography facilitated the development of the subnivean space (Sanecki et 

al. In Review-b ). This is in contrast to the non-nival period when, although still 

heavily utilising structurally complex habitats, small mammals were also able to 

exploit habitats that would not be available· to them during the winter (Sanecki et 

al. In Review-b ). 

Changes in home range size and movement between seasons have been reported 

for both A. swainsonii and R. fuscipes in nival areas (Carron 1985) and for R. 

fuscipes in non-nival areas (Woodside 1983). In general, however, the greatest 
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reduction occurs between breeding (spring/summer) and non-breeding 

(autumn/winter) seasons (Woodside 1983; Carron 1985). Our radio tracking 

surveys occurred within the non-breeding period and thus should not have been 

affected by breeding or dispersal activities. In the Snowy Mountains, Carron 

(1985) reported reduced winter movement in A. swainsonii but not in R. fuscipes, 

based on average adjusted distances moved (AADM) derived from trapping grid 

data. In this study, A. swainsonii and R. fuscipes winter home ranges were 

similar in size. Only for the 95% UC was the home range of R. fuscipes larger 

than A. swainsonii, but it is possible that this may be an artefact of the small 

sample size and/or the limitations of the ,kernel home range estimation method 

(Worton 1989). 

The significant reduction in home range size has implications for the overwinter 

survival of these species in nival areas. At 1650 m (the elevation at which this 

study was undertaken) vegetation and microtopography are key factors in the 

~evelopment of the subnivean space. As such, its deVelopment is more extensive 

·than that occurring. at higher elevations where small mammals are all but limited 

to boulderfields and areas of high microtopographic relief (Sanecki ·et al. In 

Review-b). 

Antechinus swainsonii is insectivorous (Wakefield & Warneke 1967; Dickman et 

al. 1983; Green 1989) and a reduction of foraging· capacity during winter could 

jeopardise its ability to find sufficient food for survival, since insectivores tend to 

have higher metabolic rates than omnivores (Aitchison 1987). This species 

appears to compensate for the reduced home range size in winter by increasing 

activity (Sanecki et al. In Review-c). Food availability also may not be limiting 

since, at a study site of similar elevation, Green (1989) reported that the numbers 

of invertebrates detected in pitfall traps reached a peak in September and 

included a substantial proportion of the preferred dietary items of A. swainsonii 

(Araneae, Coleoptera and Hemiptera). 

Diet switching has been reported in the omnivorous R. fuscipes (Watts 1977; 

Carron et al. 1990). When snow is absent, the diet of R. fascipes largely 

comprises mycorrhizal fungi and insects, while during winter their diet includes a 

greater proportion of plant material, in particular monocotyledons (Carron et al. 

1990). Reduced consumption of insects during winter also may reduce potential 
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competition with the insectivorous A. swainsonii. The different activity patterns 

of these two species may further reduce competition with A. swainsonii (see 

below). 

The minimum amount of habitat required by either species of small mammal to 

successfully overwinter- is not known. We speculate, however, that as home 

range decreases, diet switching enables R. fuscipes to survive without needing to 

forage as widely for resources, but rather to adopt an energetically more 

conservative strategy similar to the sympatric Mastacomys fuscus. The latter 

species, an almost obligate herbivore, displays very little winter activity, relying 

almost exclusively on monocotyledons in the vicinity of its winter nest site 

(Carron et al. 1990; Bubela et al. 1991). This interpretation is supported by the 

observation that R. fuscipes is less active during winter compared to autumn 

(Sanecki et al. In Review-c). 

Communal nesting is believed to enhance overwinter survival by impartip.g 

energy conservation benefits in cold climates (Madison 1984; Rappold 1989), 

and has been found to occur with M fuscus during winter (Bubela & Rappold 

1993). Our findings confirm the observations of (Green 1988) that A. swainsonii 

is solitary and does not nest communally; its diet of invertebrates must provide 

sufficient energy for thermoregulation in all seasons, although Green (1988) 

suggests that basking may occur during winter. Rattus fuscipes displays 

considerable social interaction in non-nival areas (Woodside 1983) but whereas 

Woodside (1983) contends that adult females maintain discrete and non

overlapping home ranges, we found that adult females during autumn showed 

considerable home range overlap. On a number of occasions during autumn 

collared females were located within a few metres of each other. Based on the 

destruction of radio collars during autumn, it is also clear that there is 

considerable social contact with conspecifics. 

Due to the small number of females tracked during winter, we are unable to draw 

conclusions about possible gender differences in spatial organisation. All four of 

the animals tracked during winter nested in proximity to each other, and again 

damage to radio collars indicated close social contact with conspecifics. It is 

possible that this contact was with uncollared individuals, but the proximity of 
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nesting during the daytime and synchrony of activity patterns of the collared 

animals suggests that there was contact between these individuals. 

8.5.2 Activity patterns 

Increased diurnal activity during winter has been reported among rodents and 

other small mammals in nival areas around the world (Kucera & Fuller 1978; 

Stebbins 1984). In this study, R. fuscipes remained primarily nocturnal during 

autumn and winter. Rattus fuscipes is mainly nocturnal in other areas (Hall 

1980; Woodside 1983), and it would appear that despite snow cover, this pattern 

is maintained during the winter, at least in areas with ephemeral snow cover 

(Sanecki et al. In Review-a; Sanecki et al. In Review-b). 

Our observations contrast with the findings of (Carron 1985) who noted an 

increase in diurnal activity of R. fuscipes during winter. Before the winter 

tracking period in 2003, snow cover was patchy, and animals were exposed to 

non-nival or supranivean photoperiods. Continuous snow cover of sufficient 

depth to eliminate a diurnal light cycle from the subnivean space was established 

at the study site for no more than two weeks before tracking commenced. It is 

possible that R. fuscipes may not have had sufficient time to alter its activity 

pattern before winter radio tracking commenced. However, as substantial areas 

of the Snowy Mountains experience patchy snow cover of short duration 

(Osborne et al. 1998; Sanecki et al. In Review-a), it is likely that the 

maintenance of a nocturnal activity pattern by R. fuscipes during winter is 

common. 

It also has been suggested that increased diurnal activity of small mammals in 

winter may be encouraged by daytime temperatures that are higher than at night

time (Carr-0n 1985). This seems unlikely under continuous snow cover as 

subnivean space temperatures are stable, remaining between 0°C and 1 °C 

regardless of air temperature (Dimpel & Calaby 1972; Sanecki et al. In Review

a). If increased day temperatures are beneficial for small mammals in winter, 

this benefit is only realised when snow cover is patchy and the subnivean space 

is more thermally coupled to the supranivean environment, or when animals 

could find snow-free habitat patches in which to forage or bask during the day 

(Sanecki et al. In Review-c). This would have occurred earlier in the winter 
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when snow cover was not completely established. However, there is an 

increased risk of predation at this time, with small mammals becoming a more 

important component of the diet of foxes during winter (Green & Osborne 1981). 

As such, more diurnal activity might increase predation risk early in the winter. 

The non-nival activity pattern of A. swainsonii has been variously described as 

largely crepuscular or nocturnal (Carron 1985; Green & Osborne 1994), diurnal 

(Green & Crowley 1989) or throughout the diel cycle (Hall 1980). Carron 

(1985) and Green & Osborne (1994) noted that during winter A. swainsonii is 

active throughout the day. Tlie results of this study also showed no significant 

difference in activity levels between night and day. 

Based on our findings there was no apparent change in activity patterns for either 

A. swainsonii and R. fascipes as a result of short exposure to complete snow 

cover. This suggests that in nival areas under short-term or ephemeral snow, 

both species maintained activity patterns observed among conspecifics in non

nival areas (Warden & Wallis 1979; Hall 1980). Therefore, snow per se did not 

influence temporal activity immediately and it may require longer exposure times 

to an environment lacking diurnal light cycles to force changes to activity 

patterns. To determine whether this pattern is maintained throughout the winter, 

further investigations are required comparing activity patterns at sites with deep 

and persistent snow (for example, boulderfields, (Sanecki et al. In Review-b) and 

sites where snow is shallow enough to allow light to penetrate to the subnivean 

space. 
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9.1 Abstract 
The increasing popularity of winter recreation activities and the development of 

ski resorts and associated infrastructure have the potential to affect adversely 

small mammal fauna that over-winter in the subnivean space in many parts of the 

world that experience snow conditions. We investigated the effects of human 

activities on the maintenance of the subnivean space, which is critical to the 

over-winter survival of small mammals in Kosciuszko National Park, south

eastern Australia. 

Human activities associated with snow-based recreation, such as the creation of 

ski pistes, surface ski lifts and over-snow routes, involve compression of the 

snowpack and resulted in small or absent subnivean spaces (average 1.2 cm) and 

high snow cover densities (generally over 0.5 g cm-3). By contrast, the subnivean 

spaces associated with unmodified snow cover averaged 8 - 20 cm depending on 

vegetation type. The density of unmodified snowpack was less than 0.35 g cm-3 

in June but increased throughout the season to levels comparable to those of 

compressed snow. 

When the snowpack was experimentally compressed at 22 sites, destroying the 

subnivean space, detections of two small mammal species (Rattus fuscipes and 

Antechinus swainsonii) significantly (p<0.0001) declined by 75-80%. These 

species remain active below the snow throughout the winter and depend on the 

presence of an adequate subnivean space. The removal of vegetation by fire 

significantly (p<0.0001) reduced the size of the subnivean space regardless of 

habitat type. Vegetation clearing occurs as part of ground preparation prior to 

establishing ski runs. Supergrooming, in which surface soil is also disturbed, is 

likely to have similar (if not more extreme) effects. 

Nival areas used for snow-based recreation should be managed to minimise 

negative effects on subnivean fauna, by confining developments to areas of low 

habitat value and maintaining natural features associated with subnivean space 

formation (dense shrubs, boulders and/or microtopography). 

Keywords: Management, ski resorts, snow grooming, ski pistes, Australian 

Alps. 
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9.2 Introduction 
Demand for snow-based recreation continues to increase globally, fuelling the 

development of new ski resorts and the expansion of existing resorts (Young & 

Boyce 1971; Tsuyuzaki 1994; Pickering & Hill 2003). In Australia, however, 

the limited extent of alpine and subalpine areas, comprising only 0.02% of the 

continental land mass (Green 1998a), means that scope for expansion of snow

based recreation is limited (NPWS 1988; Konig 1998). Most of the areas subject 

to the accumulation of suitable snow occur in national parks with high 

conservation values, placing additional constraints on development. Added to 

this is the prospect of global warming which may reduce the areas of snow cover 

in Australia (Whetton et al. 1996) and elsewhere (Houghton et al. 2001). It 

seems probable that these increased recreation demands will need to be met by 

an ever decreasing snow resource, and consequently there is an imperative to 

understand the potential impacts on a range of biota that may result from human 

activities in snow-covered environments. 

For small mammals, the subnivean space between the base of the snowpack and 

the ground surface is essential for survival under snow (Formozov 1946; Pruitt 

1984; Green & Osborne 1994; Green 1998b; Sanecki et al. In Review-b). In 

Australian snow conditions, the formation and maintenance of the subnivean 

space (and hence the movement of small mammals) does not occur as a result of 

the development of depth hoar (Sanecki et al. In Review-a) as it does elsewhere 

(Sturm et al. 1995). Rather, it depends almost exclusively on the presence of 

structures (shrubs, boulders and micr?topographic features) able to support the 

weight of the snowpack above the ground (Sanecki et al. In Review-b ). Human 

activities that affect the development and persistence of the subnivean space may 

have impacts upon the winter survival of small mammals (Schmid 1971; 

Halfpenny & Ozanne 1989; Green 1998b; Sanecki 1999), but there has been little 

empirical work undertaken to investigate the extent and severity of these impacts. 

The compression of the snowpack associated with the movement of over-snow 

· vehicles (Schmid 1971; Maysk 1973; Foreman et al. 1976; Keddy et al. 1979) 

has been of concern for some time (Young & Boyce 1971). Similar impacts 

would be expected as a result of snow grooming for the creation of ski pistes 

(downhill ski slopes and cross-country trails) and surface ski lifts (Rix en et al. 
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2003). Snow compression can cause the subnivean space to collapse, preventing 

movement of subnivean fauna (Schmid 1971). Supergrooming, the clearing of 

vegetation and levelling of the ground surface to enable skiing on shallower 

snow, is also likely to reduce the extent of the subnivean space by removing 

structures vital to its formation and maintenance (Sanecki et al. In Review-b ). 

Activities such as the grooming of ski slopes and trails and the preparation of ski 

lift lines are generally not undertaken by resort operators until a minimum depth 

of snow cover is obtained (Perisher 2000). Often, however, this depth is 

determined by safety considerations for the operation of machinery rather than 

on ecological grounds. If suitable depths of snow are achieved in one or two 

early season snow falls which have low initial physical strength (Seligman 1962; 

Mckay & Gray 1981 ), the snowpack is easily compacted to ground level. 

In this paper, we consider the potential effects of snow cover modification · 

associated with ski resort operation in Kosciuszko National Park, south-eastern 

Australia. In particular we examine: 1) how snow cover is affected by 

recreational use and associated activities; 2) how the distribution of sm~ll 

mammals in the subnivean space is affected by the compression associated with 

these activities; and 3) how the extent of the subnivean space is modified by 

removal of surface vegetation by opportunistically using the landscape denuded 

of vegetation by a fire. 

9.3 Methods 

9.3.1 Study Area 

The Australian Alps are located in south-eastern Australia. They comprise a 

disjunct series of peaks and plateaux extending for about 350 km in a generally 

north-easterly direction from their southern extent at about 37°S 146°E to 35°S 

149°E. The Alps contain 13 skiresorts with a total downhill skiable area of 

2734.5 ha and 379 km of cross country ski trails (Australian Snow Ski Resorts 

2004). A number of small resorts are also located on the island of Tasmania but 

ski slope and trail development are not extensive there. 

The study area for this investigation was located in the Snowy Mountains, (36°S, 

148°E) (Figure 9 .1 ). The Snowy Mountains contain the largest contiguous alpine 

and subalpine areas in Australia lying above 1500 m and subject to the 
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accumulation of snow cover during winter (Costin 1989). The Snowy Mountains 

are, for the most part, contained within the Kosciuszko National Park. Four ski 

resorts are located within the boundaries of the park including Australia's largest 

ski resort at Perisher Valley (36.42°S 148.41°E) with a downhill skiable area of 

1245 ha and about 104 km of cross country ski trails. In total, the four ski resorts 

in the Snowy Mountains contain 1820 ha or about 67% of Australia's downhill 

skiable areas and 155 km (41 %) of cross country ski trails. 

New South Wales " .'· , 

.....__ Study Area 

~·. 

Victoria 

Figure 9.1 Map of the study area 
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9.3.2 Characteristics of modified snow 

The characteristics of four types of modified snow were investigated: groomed 

downhill ski slopes, groomed cross-country ski trails, surface ski lift tracks and 

over-snow routes. Groomed downhill ski slopes and groomed cross-country ski 

trails may occur across a range of habitat types. Surface ski lift tracks generally 

require relatively smooth ground surfaces and thus are located in grasslands or 

where woody vegetation has been cleared. Over-snow routes which are used by 

snowmobiles and larger tracked vehicles usually occur on formed roads, but they 

also may be developed across other ground surfaces. 

We measured snowpack density for 15 replicates of each of the four modified 

snow types at sites within and adjacent to the ski resorts at Charlotte Pass and 

Perisher Valley in Kosciuszko National Park. Cores were drilled using a PICO 

hand auger (ESRSF, University of Nebraska - Lincoln) and weighed in the field 

using a spring balance. Subnivean space size was measured after removal of the 

core, although this was not practicable in some cases due to snow depth. 

Analysis of Variance was used to determine differences in snowpack density and 

subnivean space size between the various types of modified snow. Modified 

snow density was then compared to natural snow cover density throughout the 

winter using data obtained from Snowy Hydro Limited for the Spencers Creek · 

snow course (36.43°S, 148.35°E, 1830 m asl). 

9.3.3 Snow compression experiment 

Twenty-two sites were established at locations on snow accumulating aspects 

between approximately 1550 m and 1700 m asl. Sites were established where 

there was sufficient habitat structure to permit the development of the subnivean 

space during the nival period (Sanecki et al. In Review-b ), and where we 

detected the presence of small mammals during a hair tube survey prior to the 

onset of snow (see Sanecki and Green 2005 for hairtubing methods). Each site 

consisted of two snow-tubes (1 m long and 90 mm diameter) attached to timber 

stakes located approximately 5 m apart with sufficient habitat structure to permit 

small mammal movement between them during all seasons. 

·A hair tube survey was conducted once adequate snow cover was established. 

Snow cover was considered adequate if it was at least 50 cm deep and there was 
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no exposed ground and no visible connectivity between the subnivean space and 

the snow surface within at least a 5 m radius of each snow-tube. 

After the initial survey, we randomly selected one snow-tube at each of the 22 

sites and compressed a 1 m wide strip of snow in a circle around each of the 

selected snow-tubes. Snow was compressed by trampling (and excavation where 

necessary) to destroy layers in the snowpack that might prevent complete 

compression. The effectiveness of the compression was determined using a 

Federal Snow sampler (Carpenter Machine Works, Seattle) to check the size of 

the subnivean space. Following the methods used by (Sanecki et al. In Review

b) we used the sampler to drill six holes randomly into the compressed strip. The 

sampler was drilled until it came to rest on the ground surface, at which point the 

snow depth was measured. A snow core was then extracted and the difference 

between snow depth and the length of the core was taken to be the size of the 

subnivean space. Snow compression was considered complete when the 

subnivean space was less than 2.5 cm. Both snow-tubes at each site were then 

surveyed using hair tubes. 

To determine whether snow compression around snow-tubes affected the 

likelihood of detecting small mammals, we used binomial generalised linear 

models with detections of small mammals as the response variables and snow 

condition (uncompressed, compressed) as fixed effects. 

9.3.4 Fire effects on habitat structure 

During January and February 2003, a wildfire burnt 69% of the area above 1500 

m in the Snowy Mountains (Green & Sanecki In Review). This provided an 

opportunity to investigate the effect of the loss of habitat structure, as occurs on 

new ski slopes, on the development of the subnivean space. 

We used sampling sites at elevations between 1600 m and 1800 m asl that had 

been established for previous studies (Sanecki et al. In Review-b; Sanecki et al. 

In Review-c) and randomly selected five burnt and five unburnt replicates of 

each of the four major habitat types present in the subalpine zone of the Snowy 

Mountains (wet heath, dry heath, seral woodland, grassland). At each replicate 

site, the size of the subnivean space was measured at three sampling plots as 

described above using a Federal Snow sampler. 
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The effects of burning and habitat type on subnivean space size were investigated 

using Analysis of Variance; modified snow types were included in the analyses 

for comparison. Data were log-transformed where necessary to satisfy 

assumptions of normality. 

9.4 Results 

9.4.1 Modified snow 

Neither subnivean space size nor snow density was significantly different among 

all modified snow types (Table 9.1). Consequently, data for all modified snow 

types were combined for further analyses. In many cases, there was no 

measurable subnivean space under modified snow, rather the snowpack sat 

directly on the ground. Modified snow was significantly denser than natural 

snow cover at Spencers Creek during all months except October (F5,122 62.75, 

p<0.001) (Figure 9.2). 

Table 9.1 Mean subnivean space size and snow density of modified snow types. Figures in 
brackets are standard deviations. 

Subnivean space (cm) Snow density (g cm"3) 

Groomed downhill ski slopes 1.6(1.4) 0.52 (0.03) 

Groomed cross-country ski trails 1.1(1.4) 0.51 (0.06) 

Surface ski lift tracks 0.9 (1.5) 0.56 (0.03) 

Over-snow routes 1.3 (1.5) 0.49 (0.05) 
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Figure 9.2 Snow density of modified snow in July, including groomed ski trails, over-snow 
routes, and surface lift tracks in comparison to naturally occurring snow density recorded 

monthly by Snowy Hydro at Spencers Creek snow course. 

9.4.2 The effect of compressed snow 

Table 9.2 shows the number of small mammal detections in response to the 

modification of snow cover. There was no significant difference in the 

likelihood of detection between treatment (compressed) and control 

(uncompressed) plots during the first survey (before snow was modified by 

compression). During the post-compression survey, small mammals were 

significa:ntly more likely to be detected at uncompressed plots (l = 19.52 

p<0.0001). 

Table 9.2 Number of small mammal detections in response to the experimental modification 
of the snowpack by compression and consequent destruction of the subnivean space. 

R. fuscipes A. swainsonii 

Control Compressed Control Compressed 

Pre-Compression 3 5 16 15 

Post-Compression 5 1 16 4 
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9.4.3 Effect of habitat structure loss 

The subnivean space was significantly smaller at all of the burnt habitats in 

comparison to the unburnt habitats (F4,238 331.5, P<0.0001). The unburnt 

habitats showed a gradational decline in subnivean space size (Figure 9.3) with 

wet heath and dry heath having significantly larger subnivean spaces than other 

habitats {Table 9.3). Some structural components of wet heath survived burning 

and enabled a small subnivean space to form (Figure 9.4, Table 9.4), whereas in 

the other three habitats the space averaged 3.8 cm. Modified snow had 

significantly smaller subnivean spaces than all burnt habitats. 
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Figure 9.3 Subnivean space size at unburnt habitats. 

, 

Table 9.3 Results of pairwise comparisons of subnivean space size among unburnt habitats. 

Wet Heath Dry Heath Woodland Grassland 

Dry Heath NS 

Woodland <0.0006 <0.0246 

Grassland <0.0001 <0.0001 <0.0177 

Modified Snow <0.0001 <0.0001 <0.0001 <0.0001 

205 



K 
w 
N 
Ci5 
w 
~ a. en 

32 

28 

24 

20 

16 . 

12 

I ±Std. Dev. 

CJ :tStd.E". 
o Mean 

z 
<( 
w 
> 8 z 
m 
:::::> en 4 

0 ········~···c!]····~····~····~ 
-4 

Wet Heath Dry Heath Woodland Grassland Modified Snow 

Figure 9.4 Subnivean space size at burnt habitats. 

Table 9.4 Results of pairwise comparisons of subnivean space size among burnt habitats, 
including unburnt modified snow sites. 

Wet Heath Dry Heath Woodland Grassland 

Dry Heath <0.0271 

Woodland <0.0108 NS 

Grassland <0.0002 NS NS 

Modified Snow <0.0001 <0.0001 <0.0001 <0.0139 
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9.5 Discussion 
Winter-active small mammals are dependent on the formation of a subnivean 

space, which occurs under Australian snow conditions only if structural features 

such as vegetation, boulders and microtopography are present (Sanecki et al. In 

Review-b ). Therefore, it was not surprising that the destruction of the subnivean 

space in otherwise suitable habitat significantly reduced the detection rate of A. 

swainsonii and R. fuscipes in our study area at Kosciuszko National Park. Both 

species actively forage in the subnivean space and experience reductions in home 

range size during winter (Sanecki et al. In Review-d). Therefore, further 

reductions of available habitat by snow compression could jeopardise their 

ability to survive over winter. Since most recreational use and over-snow 

activities occur at higher elevations, the impact of subnivean space loss due to 

compression may be even more detrimental than at lower elevations where there 

is more extensive subnivean space development and patchy snow permits small 

mammals to use both the supranivean and subnivean environments (Sanecki et 

al. In Review-b ). 

The maritime and ephemeral snow cover types occurring in Australia (Sanecki et 

al. In Review-a) are characterised by snow density values (and thus physical 

strength of snow) that are generally greater than those of alpine or taiga snow 

that occurs overseas (Sturm et al. 1995) and increase progressively following 

deposition (Figure 9.2) (Ruddell 1998; Sanecki et al. In Review-a). The ability 
I 

of the snowpack to resist compressive forces is therefore lower during the early 

part of the winter. If early snow falls are accompanied by strong winds, snow 

will fill between shrubs from the ground level and thus initially inhibit the 

formation of the subnivean space. If this snow cover is then compacted, a high

density snow layer is formed in contact with the ground. This inhibits 

subsequent formation of a subnivean space. By contrast, under still conditions, 

snow may be more readily intercepted by vegetation enabling a subnivean space 

to form almost immediately; if the snow binds with the vegetation before 

compaction, the subnivean space may not be as readily destroyed (G. Sanecki 

pers. obs). 

The capacity of snow modification activities to destroy the subnivean space once 

it is formed is affected not only by the compressive force that is applied to the 
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snow and th.e snow's ability to resist th.is force, but also by th.e strength and 

complexity of the underlying habitat that supports the snowpack (Sanecki et al. 

In Review-b ). The removal of vegetation structure in the 2003 fires had a 

significant effect on the development of the subnivean space (Figures 9.3 and 

9.4). This effect could be considered analogous to the impact caused by human 

activities that reduce or remove the structural elements of habitats, in particular 

supergrooming. Supergrooming involves the removal of all woody vegetation as 

well as other features such as microtopography and boulders, all of which are 

important structural components of small mammal habitats (Sanecki et al. In 

Review-b ). Therefore, it is likely that supergrooming has even more extreme 

impacts than fire on habitat integrity during the nival period. This is suggested 

by the fact that wet heaths, which are often associated with higher 

microtopographic relief because they tend to occur in ·drainage lines, had 

significantly larger subnivean spaces than the other habitats, even after burning 

had removed the vegetation. 

Snow modification has effects on the integrity of vegetation that may 

compromise its long-term ability to sustain a subnivean space. In areas of 

shallow snow, vegetation protruding through the snowpack may be broken by the 

movement of vehicles, machinery or skiers (Forbes 1992; Emers et al. 1995), 

while vegetation under deeper snow cover may be crushed as the snowpack 

above it is compacted (Mosimann 1985). Erect woody plants are the most 

vulnerable to damage by over-snow vehicles (Neumann & Merriam 1972; Emers 

et al. 1995), but other plant communities also suffer adverse effects (Grell er et al. 

1974; Foreman et al. 1976; Keddy et al. 1979). 

The thermal conductivity of snow is directly related to its density (Halfpenny & 

Ozanne 1989), consequently a snowpack that has been compacted has less 

thermal buffering capacity than unmodified snow (Singh 1999). Under 

Australian snow conditions, winter-active small mammals appear to favour areas 

of thermal instability where winter temperatures can fall well below freezing 

(Sanecki et al. In Review-c). Therefore, changes in the subnivean environment 

during winter as a result of increased thermal conductivity of snow are likely to 

have little direct impact on these species. However, this may not be the case for 

the mountain pygmy-possum Burramys parvus which experiences periods of 
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torpor throughout the winter months; any changes to thermal regimes may be 

detrimental to its survival (Walter & Broome 1998). On a global basis, thermal 

effects of snow modification on small mammals need to be considered in the 

context of the ecology of each species and the prevailing climatic and snow 

cover conditions. 

9.5.1 Management implications 

The activities associated with ski resort development and snow-based recreation 

often represents the most intensive examples of human-induced changes to snow

covered ecosystems. Our findings suggest that there need not be a conflict 

between winter recreation and the over-winter survival of small mammals, 

provided appropriate consideration is given to ski slope development. For the 

most part, slopes consisting of grassland or herbfield habitats with little 

microtopography have limited habitat value for small mammals throughout the 

year (Sanecki et al. In Review-b ), and if snow modification is focused on these 

slopes, the negative effects on small mammals will be minimised. In particular, 

supergrooming should be limited to sites of low habitat value. 

Shrubby habitats on mid to upper slopes, such as dry· heaths and woodlands, are 

not high quality nival habitats because the development of the subnivean space in 

these habitats is naturally limited (Sanecki et al. In Review-b ). These suboptimal 

winter habitats are still utilised by small mammals during the non-nival period 

and are probably important in providing additional foraging areas and facilitating 

breeding and dispersal activities (Carron 1985). Managers should be aware that 

any deliberate or incidental damage to these habitats as a result of snow 

modification may reduce the capacity for these habitats to support small 

mammals during the non-nival period. 

High quality nival habitats for small mammals include boulderfields, wet heaths 

and areas of high microtopography such as drainage lines in which small 

mammal activity is focused during the nival period (Sanecki et al. In Review-d). 

From a management perspective, it is these habitats that should be identified and 

protected, as it seems probable that these act as winter refugia and as population 

sources. We recommend that no snow modification be permitted in high quality 

small mammal habitats and where necessary fencing be used to protect them. 
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Grooming and movement of oversnow vehicles over important habitats should 

only occur once snow cover has attained sufficient strength to resist compression 

of the subnivean space. The connectivity of high quality habitats should also be 

maintained. 

Subsequent to the 2003 fires, many unburnt high quality habitats now occur 

within, or in the vicinity of, ski resorts due to the concentration of firefighting 

activities on the protection of ski lodges in Kosciuszko National Park. These 

remnant habitats are vulnerable to disturbance due to heavy usage of snow near 

resorts and require active measures to ensure their protection. Their management 

presents particular challenges, since impacts may not only be the result of 

management decisions by resort operators, but also of unstructured activities 

(snow play) which are difficult for managers to monitor or control. 
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10.1 Conclusion 

The work undertaken for this thesis represents the first attempt anywhere in the 

world to describe and quantify the distribution and behaviour of winter-active 

small mammals in relation to snow cover and the development of the subnivean 

space. Although the fauna described in this thesis are unique to Australia, the 

findings of this study have a broader relevance to researchers working in areas 

around the world that are subject to the seasonal accumulation of snow cover, 

particularly in areas with comparable climatic conditions. 

The findings of this study are also relevant to colder regions which may be 

subject to milder climatic conditions with continued global warming. Nival areas 

at higher latitudes, such as the taiga and higher alpine zones, may in time, with 

global warning, be subject to snow cover that is more characteristic of nival areas 

at lower elevations and latitudes, such as in Australia. 

Australian snow cover is maritime at higher elevations (above about 1700 m asl 

in the Snowy Mountains) and ephemeral at lower elevations and on higher 

ablating aspects (Chapter 4). To date, most research in subnivean ecology has 

emanated from boreal regions which are dominated by taiga and alpine snow 

classes, while maritime snow is the least extensive class and ephemeral snow by 

its nature occurs sporadically (Sturm et al. 1995). Therefore, conclusions based 

on research in boreal zones are unlikely to be applicable to Australian snow 

conditions. The role of depth hoar in the development of the subnivean space is 

a case in point. 

Depth hoar is considered by some workers in boreal zones to be crucial in 

permitting small mammals to exist in the subnivean space (Pruitt 1978, 1984; 

Halfpenny & Ozanne 1989), althou~, to date, no studies have shown 

conclusively that this is the case. Depth hoar does not occur in the Australian 

Alps (Chapter 4), yet a subnivean space forms and small mammals are able to 

survive there because of the presence of suitable structures that support the 

snowpack (Chapter 6). It appears that a subnivean space can form as a result of 

two quite different processes, which could be termed 'passive' an.d 'active'. In 

the passive process, the snow density increases as a result of metamorphism 

(Chapter 2) until it has sufficient structural capacity to maintain a subnivean 
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space in conjunction with competent structures. The active process refers to 

small mammals having the ability to tunnel through low density snow cover such 

as depth. hoar and th.us actively ''make" th.eir own subnivean space. In the 

absence of empirical evidence regarding the role of depth hoar in subnivean 

ecology, the relative importance of the two processes on a global scale is 

unknown. In Australia, the passive process is dominant and in this study there 

was no evidence of the active process occurring. 

Rattus fascipes and A. swainsonii have wide distributions; indeed snow-free 

areas constitute the bulk of their geographic ranges (Chapter 3). Both species are 

able to tolerate thermally variable climates (Chapter 7), which is not surprising 

since temperature extremes are experienced in other regions where they occur. 

For example, annual minimum and maximum temperatures at Perisher Creek 

(elevation 1735 m) are -19.5 °C and 30.0°C respectively, while corresponding 

temperatures at Tumut where both species are also common (elevation 305 m) 

are -7.8 °C and 42.8 °C. Although somewhat milder, monthly minimum 

temperatures at Tumut are still below 0 °C for 9 months of the year (Bureau of 

Meteorology). 

Thermal stability and the relatively mild temperatures in the subnivean space are 

viewed as imparting significant benefits for small mammals (Coulianos & 

Johnels 1962; Rappold 1998). However, the findings of this study indicate that 

these considerations need to be to taken in an appropriate context. First, thermal 

stability is only useful to small mammals if a suitable subnivean space exists 

(Chapters 6 and 7). Second, comparisons between air temperatures and those 

occurring in the subnivean space are misleading, because temperatures at ground 

level are greatly modified by structures such as vegetation, whether or not snow 

is present (Geiger 1950). Third, small mammals in thermally unstable locations, 

where snow cover was not complete or long lived, derived considerable thermal 

benefit from daytime temperatures that were often considerably higher than the 

constant 0-1 °C experienced by animals in the subnivean space, even in mid 

winter (Chapter 7). Overall, however, the fact that there is no significant shift in 

diurnal activity patterns of either R. fuscipes or A. swainsonii during the nival 

period (Chapter 8) suggests that the temperatures to which they are exposed are 

within the tolerance limits of these species. 
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In the subalpine zone, the nival distributions of both R. fuscipes and A. 

swainsonii are related to snow type: ephemeral snow restricts winter activity to a 

much smaller degree than deep maritime snow, which reduces small mammal 

detections despite the presence of shrubs capable of supporting a subnivean 

space (Chapter 6). The situation is likely to be even less favourable for small 

mammals in the alpine zone because the predominant vegetation formations are 

herbfields (Chapter 3) which have a subnivean space of only 1.10 ± 0.86 cm (G 

Sanecki and K Green, unpublished data). Where heathland habitats occur in the 

alpine zone, reduced plant growth due to the short growing season is likely to 

result in low-growing shrubs incapable of supporting the snow cover. It seems 

probable that at elevations above 1800 m asl in the Snowy Mountains, the 

distributions of both species are confined almost exclusively to boulderfields. 

The findings of this study suggest that at higher elevations, high quality habitats 

act as refugia from which small mammals re-radiate following the nival period 

into habitats that are otherwise unsuitable for overwintering due to the lack of 

subnivean space (Chapter 6). There was no direct evidence that small mammals 

perish in suboptimal nival habitats, but the absence of detections in these habitats 

for up to four weeks after snowmelt strongly suggests that this is the case 

(Chapter 6). If nival refugia act as sources for recolonisation of habitats used 

during the non-nival period, it is likely that both R. fuscipes and A. swainsonii 

experience annual genetic 'bottlenecks' whereby the gene pool shared by 

survivors in each refugium is different from those of surrounding populations. 

Thus, snow cover could prove to be the major influence on metapopulation 

dynamics of at least some species in alpine and subalpine areas. This might 

provide an interesting avenue for future research. . 

The main impact of human activities on winter-active small mammals arises 

from the compression of snow and consequent destruction of the subnivean 

space, and the modification and loss of habitat structure that is crucial to the 

development of the subnivean space (Chapter 9). As the area available for 

foraging decreases during winter (Chapter 6), the home ranges of both R. 

fuscipes and A. swainsonii contract dramatically into high quality habitats and 

overlap to a greater extent (Chapter 8). Although there would appear to be a 

certain level of resource partitioning .between these species that may reduce 
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competition, both species are dependant on the development of the subnivean 

space. Beyond some threshold the reduction of the extent of the subnivean space 

extent would jeopardise the over winter survival of individuals or even entire 

populations. The situation may be somewhat different for the broad-toothed rat 

Mastacomys fuscus which is relatively inactive during winter (Bubela et al. 

1991). While this species may not require access to extensive foraging areas, it 

is particularly vulnerable if destruction of the subnivean space occurs in the 

vicinity of its communal nest sites (Chapter 3). 

The negative effects of snow compression on the insulating properties of snow 

are more relevant to boreal snow conditions where continuous nival temperatures 

are far lower than any recorded in Australia (Formozov 1946). Maritime snow 

is, by its nature, relatively dense (Chapter 4) and thus has a comparatively high 

thermal conductivity. Nevertheless, subnivean temperatures remain stable even 

under relatively shallow snow provided cover is continuous, and in any case 

there is no evidence that R. fuscipes and A. swainsonii are adversely affected by 

fluctuating nival temperatures (Chapter 7). This may not be the case for the 

mountain pygmy possum Burramys parvus which is dependent on the 

maintenance of a thermally stable hibemaculum (Walter 1996). 

To ensure the continued survival of small mammals in nival areas, management 

practices should have, as their primary objective, the conservation of high quality 

habitats containing suitable structures to facilitate the formation and maintenance 

of the integrity of the subnivean space (Chapter 9). Achieving this objective 

does not necessarily mean that conflict with recreational users is inevitable, 

provided that the requirements of subnivean fauna are well understood and taken 

into account. If winter recreation is well managed and contained within limited 

areas then their overall impact is likely to be minimal in the Australian Alps. 

However, if climate change causes shrinkage of snow covered areas and there is 

increased competition for the diminishing resource between wildlife and 

recreational users, resolving conflicts will become increasingly problematic. 

Average global surface temperatures have increased by 0.6 ± 0.2°C since 1900, 

and the current rate of warming is perhaps greater than at any time in the past 

1000 years (IPCC 2001); the rate of change in global temperature since 1976 is 

about three times that of the past century (WMO 2004). The years 1995-2004 
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included the warmest 10 years on record, with 1998 the warmest year since 1861 

(WMO 2004). While no consistent declines in snow cover were evident in the 

Snowy Mountains between 1910 and 1991 (Duus 1992), more recent analyses 

indicate that alpine temperatures have increased since 1962 and snow depths may 

have declined slightly since 1957 (Hennessy et al. 2003). Wide interannual 

variability in precipitation and subsequent snow cover, resulting froin the 

generally low elevation of the Australian Alps interacting with very sensitive 

atmospheric conditions (Davis 1998), makes it difficult to discern long-term 

trends in past data. However, models of future snow cover conditions in 

Australia are unanimous in predicting a decline in the extent and duration of 

snow cover over the next 20-70 years (Galloway 1988; Whetton et al. 1996; 

Whetton 1998; Hennessy et al. 2003). 

Reduction of snow cover is likely to benefit R. fuscipes and A. swainsonii by 

enabling the expansion of populations at higher elevations into nival habitats 

currently unavailable due to a lack of subnivean.space. As the tree line ascends, 

areas currently supporting alpine vegetation will be invaded by subalpine 

shrubby species (Hughes 2003), potentially increasing the extent of habitats 

capable of supporting a subnivean space. 

Mastacomys fuscus nests on the ground surface in the nival period and m 

underground burrows when snow is absent (Bubela et al. 1991; Green & 

Osborne 1994), which suggests that shallow and short-lived snow cover may 

expose the species to an increased risk of predation (Green 2002). Present 

distribution suggests that declining snow cover will. be detrimental in the long 

term because, although M fuscus occurs outside the major nival areas of 

Australia (Wallis 1992; Green & Osborne 2003), these populations are at lower 

densities and are not able to colonise areas with wet ground in winter because of 

their dependence on burrowing in the absence of snow cover under which to 

construct above-ground nests (K. Green unpublished data). The impact of 

decreasing snow cover on this species is, however, difficult to assess. 

On the other hand, the prospects for B. parvus are bleak. This species requires 

boulderfields in areas with reliable snow cover (Mansergh & Broome 1994; 

Brereton et al. 1995); as the snowline moves to higher elevations and snow cover 

becomes more sparse, the extent of suitable habitat must decline. Burramys 

221 



parvus was once more widespread throughout south-eastern Australia, but since 

the last glacial period its distribution has contracted and it now occurs inisolated. 

patches of habitat in alpine and subalpine areas (Mansergh & Broome 1994). 

Despite the practical difficulties of working in nival environments, it is essential 

that research into these areas continues. The investigation of snow/fauna 

interactions probably represents the best opportunity for monitoring the 

ecological effects of global warming, because changes in the characteristics and 

distribution of snow are likely to be reflected rapidly in the ecology of nival 

areas, whereas climate change may take longer to become evident in more 

temperate regions. 
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